相関係数r の見方 0.7<|r|≦1 相関が強い 0.4<|r|<0.7 中間の強さ 0.2<|r|<0.4 相関が弱い 0≦|r|<0.2 相関がない
\(\normalsize\ Inverse\ regression\\ (1)\ mean:\ \bar{x^{\tiny -1}}={\large \frac{{\small \sum}{x_i^{\tiny -1}}}{n}},\hspace{10px}\bar{y}={\large \frac{{\small \sum}{y_i}}{n}},\hspace{10px}n={\small \sum}f_i\\ (2)\ trend\ line:\ y=A+{\large \frac{B}{x}},\hspace{10px} B={\large\frac{Sxy}{Sxx}},\hspace{10px} A=\bar{y}-B\bar{x^{\tiny -1}}\\ \\ (3)\ correlation\ coefficient:\ r=\frac{\normalsize S_{xy}}{\normalsize \sqrt{S_{xx}}\sqrt{S_{yy}}}\\ \hspace{20px}S_{xx}={{\small \sum}(x_i^{\tiny -1}-\bar{x^{\tiny -1}})^2 f_i}={{\small \sum} (x_i^{\tiny -1})^2 f_i}-n \cdot \bar{x^{\tiny -1}}^2\\ \hspace{20px}S_{yy}={{\small \sum}(y_i-\bar{y})^2 f_i}={{\small \sum} y_i^2 f_i}-n \cdot \bar{y}^2\\ \hspace{20px}S_{xy}={{\small \sum}(x_i^{\tiny -1}-\bar{x^{\tiny -1}})(y_i-\bar{y}) f_i}={{\small \sum} x_i^{\tiny -1} y_i f_i}-n \cdot \bar{x^{\tiny -1}}\bar{y}\\ \) |
|