ガウス-ラゲール数値積分

無限区間(0,∞)の積分をガウス-ラゲール求積法で計算します。


ガウス-ラゲール数値積分
α
分割数 n
    1. n=2,3,4,..,100

被積分関数f(x)は、解析的であることと周期関数でないことを前提としています。


ガウス-ラゲール数値積分
[1-3] /3件表示件数
BACK NEXT
[1]  2017/12/11 15:28   男 / 20歳代 / 高校・専門・大学生・大学院生 / 役に立った /
使用目的
研究
ご意見・ご感想
12/7に質問した者です。ご回答の程、誠にありがとうございました。
もう1点質問なのですが、ガウス・ラゲール積分では積分区間が[0,無限大)でありますが、
このページ上での区間を設定する部分(a)は何の役割をしているのでしょうか?
keisanより
ご指摘ありがとうございました。中身を確認したところ、aは何を入力しても"0"となるので、入力パラメータとしては意味を持ちません。
(表示していると誤解を招きそうなので、非表示にするよう修正致しました。)
[2]  2017/12/07 13:55   男 / 20歳代 / 高校・専門・大学生・大学院生 / 役に立った /
使用目的
データ解析
ご意見・ご感想
重み関数wについて、
1.
他のネットのページ(例えばwikipedia)では、重み関数w(x)が、
x^α・e^(-x)ではなく、e^(-x)となっていることが殆どです。
この違いは何でしょうか?
2.
w(x)=e^(-x)として計算しようとするならば、α=0で構わないでしょうか?
3.
そもそもαとは何なのでしょうか?
以上3点、ご回答の程よろしくお願いいたします。
keisanより
1.
重み関数をw(x)をe^(-x)としたときは、重みの計算にラゲール多項式Ln(x)を用います。一方、重み関数をx^α・e^(-x)としたときは、重みの計算にラゲールの陪多項式Lnα(x)を用います。
2.
w(x)=e^(-x)とする場合はα=0とします。
3.
ラゲールの陪多項式Lnα(x)を参照してください。
-------------
(参考)
Weisstein, Eric W. "Laguerre-Gauss Quadrature." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Laguerre-GaussQuadrature.html
[3]  2017/06/23 16:19   男 / 20歳未満 / 小・中学生 / 役に立った /
使用目的
数値積分プログラム作成の為
バグの報告
以下の部分が間違っています。
無限区間(0,∞)
正しくは、
無限区間[0,∞)
です。

BACK NEXT

アンケートにご協力頂き有り難うございました。
送信を完了しました。

Back

【 ガウス-ラゲール数値積分 】のアンケート記入欄
性別
年齢
職業

この計算式は

使用目的
ご意見・ご感想(バグ報告はこちら) バグに関する報告 (アンケートはこちら
計算バグ(入力値と間違ってる結果、正しい結果、参考資料など)
説明バグ(間違ってる説明文と正しい説明文など)
アンケートは下記にお客様の声として掲載させていただくことがあります。
送信