\(\normalsize Euler\ number\ E_n\\ (1)\ {\large\frac{1}{\cosh(x)}}={\large\frac{2}{e^x+e^{-x}}}={\large\displaystyle \sum_{\small n=0}^ {\small\infty}\frac{E_n}{n!}}x^n\\ \hspace{60px}=E_0+{\large\frac{E_1}{1!}}x+{\large\frac{E_2}{2!}}x^2+...+{\large\frac{E_n}{n!}}x^n+...\\ (2)\ E_{2n}=i{\large\displaystyle \sum_{\small k=1}^ {\small 2n+1}\displaystyle \sum_{\small j=0}^ {\small k}}{}_kC_j{\large\frac{(-1)^j(k-2j)^{2n+1}}{2^k i^k k}}\\ \hspace{30px} E_{2n+1}=0\hspace{15px}for\ n=1,2,...\\ (3)\ E_0=1,\ E_2=-1,\ E_4=5,\ E_6=-61,\ ...\\\) |
|