\(\normalsize Noncentral\ F{\tiny-}distribution\ F(x,\nu_{1},\nu_{2},\lambda)\\ (1) probability\ density\\ f(x,\nu_1,\nu_2,\lambda){\small=}{\large\displaystyle \sum_{\small j=0}^{\small\infty} \frac{e^{-\frac{\lambda}{2}} (\frac{\lambda}{2})^j {\nu_{\tiny j}}^{\frac{\nu_{\tiny j}}{2}}{\nu_2}^{\frac{\nu_2}{2}} x^{\frac{\nu_{\tiny j}}{2}-1}}{j!B(\frac{\nu_{\tiny j}}{2},\frac{\nu_2}{2}) (\nu_2+\nu_{\tiny j}x)^{\frac{\nu_{\tiny j}+\nu_2}{2}}} }\\ \hspace{80px}\nu_j=\nu_1+2j\\ (2) lower\ cumulative\ distribution\\ \hspace{30px}P(x,\nu_1,\nu_2,\lambda)={\large\int_{\small 0}^{\small x}}f(t,\nu_1,\nu_2,\lambda)dt\\ (3) upper\ cumulative\ distribution\\ \hspace{30px}Q(x,\nu_1,\nu_2,\lambda)={\large\int_{\small x}^{\small\infty}}f(t,\nu_1,\nu_2,\lambda)dt\\\) |
|