\(\normalsize The\ wave\ function\ \psi(r,\theta,\phi)\\ \hspace{100px}of\ the\ Hydrogen\ atom\\ (1)\ -{\large\frac{\hbar^2}{2m}}\nabla^2\psi-{\large\frac{Ze^2}{r}}\psi=E\psi\\ \hspace{25px}E=-{\large\frac{Z^2me^4}{2n^2\hbar^2}}, Z=\{1:H,\ 2:He^+\}\\ (2)\ \psi_{n,l,m}(r,\theta,\phi)=R_{nl}(r)Y_l^{m}(\theta,\phi)\\ \hspace{10px}{\large\int_{\small 0}^{\small{\infty}}\int_{\small 0}^{\small{\pi}}\int_{\small 0}^{\small{2\pi}}}\psi_{\small{n,l,m}}\psi_{\small{n',l',m'}}\ r^2 \sin\theta drd\theta d\phi\\ \hspace{80px}=\delta_{\small{nn'}}\delta_{\small{ll'}}\delta_{\small{mm'}}\\ (3)\ R_{nl}(r)=-\sqrt{({\large\frac{2Z}{na}})^3{\large\frac{(n-l-1)!}{2n(n+l)!}}}e^{-{\normalsize\frac{Zr}{na}}} \\ \hspace{90px}\times\ ({\large\frac{2Zr}{na}})^{l}L_{n-l-1}^{2l+1}({\large\frac{2Zr}{na}})\\ \hspace{18px}Y_l^m(\theta,\phi)=\sqrt{{\large\frac{2l+1}{4\pi}}{\large\frac{(l-m)!}{(l+m)!}}}P_l^m(\cos\theta)e^{im\phi}\\\) |
|