\(\normalsize Damped\ Oscillation\\ (1)\ equation\hspace{20px} {\large \frac{d^2 x}{dt^2}}+2\kappa{\large \frac{dx}{dt}}+{\omega_{\small 0}}^2 x=0\\ \hspace{30px}\omega_{\small 0}:\ undamped\ angular\ frequency\\ \hspace{30px}\kappa:\ resistance\ coefficient\\ (2)\ if\ \kappa<\omega_{\small 0},\hspace{20px}\omega_{\small d}=\sqrt{{\omega_{\small 0}}^2-\kappa^2}\\ \hspace{20px}x=x_{\small 0}e^{-\kappa t}\left\{ \cos(\omega_{\small d}t)+{\large\frac{\kappa}{\omega_{\small d}}} \sin(\omega_{\small d}t)\right\}\\ (3)\ if\ \kappa=\omega_{\small 0},\hspace{20px}x=x_{\small 0}(1+\omega_{\small 0}t)e^{-\omega_{\small 0}t}\\ (4)\ if\ \kappa>\omega_{\small 0},\hspace{20px}\omega_{\small d}=\sqrt{\kappa^2-{\omega_{\small 0}}^2}\\ \hspace{25px} x= x_{0} \frac{{\small(\omega_d+\kappa)}e^{(\omega_d-\kappa)t}+{\small(\omega_d-\kappa)}e^{-(\omega_d+\kappa)t}}{2\omega_d}\\ \) |
|