a2y United States Patent

US007716267B2

(10) Patent No.: US 7,716,267 B2

Ito et al. 45) Date of Patent: May 11, 2010

(54) DECIMAL COMPUTING APPARATUS, 4,536,854 A * 8/1985 Yanagita 708/518

ELECTRONIC DEVICE CONNECTABLE (Continued)

DECIMAL COMPUTING APPARATUS,

ARITHMETIC OPERATION APPARATUS, FOREIGN PATENT DOCUMENTS

ARITHMETIC OPERATION CONTROL P 62-075838 A 4/1987

APPARATUS, AND PROGRAM-RECORDED (Continued)

RECORDING MEDIUM

OTHER PUBLICATIONS

(75)

(73)

")

€2y
(22)

(65)

(30)

Aug. 30,2004 (IP)
Sep.3,2004 (IP)

(51

(52)
(58)

(56)

Inventors: Hisashi Ito, Ome (JP); Tetsuichi Nakae,
Ome (JP)

Assignee: Casio Computer Co., Ltd., Tokyo (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1184 days.

Appl. No.: 11/109,888

Filed: Apr. 19,2005

Prior Publication Data

US 2006/0047740 Al Mar. 2, 2006

Foreign Application Priority Data

2004-250678
2004-257057

Int. CI.

GO6F 7/38 (2006.01)

GO6F 7/50 (2006.01)

US.CL e, 708/513; 708/680

Field of Classification Search 708/518

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

4,021,655 A * 5/1977 Healeyetal. 708/518
4,456,955 A * 6/1984 Yanagitaetal. 712/300

Suzuki, Hiroshi, “Accuracy Estimation Algorithm in Floating-Point
Arithmetic Operation and its Evaluation.” Research Report of Infor-
mation Processing Society. Information Processing Society of Japan.
Oct. 27, 1994: vol. 94, No. 92: pp. 27 to 33.

(Continued)

Primary Examiner—Chuong D Ngo
(74) Attorney, Agent, or Firm—Frishauf, Holtz, Gooodman &
Chick, P.C.

(57) ABSTRACT

Decimal calculation apparatus, which performs multidigit
decimal calculation with the number of calculation digits set
in calculation instruction, comprises multidigit memory sec-
tion capable of storing values with greater numbers of digits
than the number of digits of a predetermined digit unit in
plurality of memory areas; calculation-instruction memory
section which stores calculation instruction having the num-
ber of calculation digits and type of calculation set therein;
and decimal calculation section which performs decimal cal-
culation of sequentially calculating numerical values of cor-
responding digit units respectively stored in plurality of
memory areas of the multidigit memory section, digit unit by
digit unit in the number of calculation digits set in calculation
instruction stored in calculation-instruction memory section,
in decimal calculation according to type of calculation set in
calculation instruction stored in calculation-instruction
memory section, and sequentially writing calculation results
in plurality of memory areas of multidigit memory section
digit unit by digit unit.

2 Claims, 39 Drawing Sheets

-300

314 INSTRUCTICN
END SIGNAL

310 LATCH
L sECTIoN

354
-] 3?0 350
i MATCH |~
cireurt [352 REGISTER

t-.—-350

F
31{ St 331
Fl
%0 o _,IfELECTORI

Fuad| Fout|-»|
333 Fad COMPUTING
>ISELECTOR H-»1 Flad UNIT

Su
PROGRAM 32417 340
ROM

- —Z{SELECTOR

»|Suad] Sout|»
334 }Sad

r—»{ Slad
Fin

PROGRAM EXT A
INSTRUCTION| o
40

316

REGISTERS W VvV |

INSTRUCTIONl >~

3N OoP DECODER CONTROL SIGNAL
g

PROGRAM i

COUNTER ~320

312 VARIABLE PARAMETER MEMORY SECTION

US 7,716,267 B2

Jp
Jp
Jp
Jp
Jp
Jp

Page 2
U.S. PATENT DOCUMENTS Jp 8-263264 A 10/1996
JP 09-190335 A 7/1997
4,542,476 A * 9/1985 Nagafuji ...l 708/518

FOREIGN PATENT DOCUMENTS

4-7737 A 1/1992
4-116717 A 4/1992
05-089041 A 4/1993
5-233853 A 9/1993
6-230964 A 8/1994
7-287649 A 10/1995

OTHER PUBLICATIONS

Suda, Reiji. “2.1. The Comparison and the Conditional Branching.”
Basic C Language and Algorithm. Aug. 30, 2002. searched: Jun. 9,
2008. <http://web.archive.org/web/20020830213509/http://www.
na.cse.nagoya-u.ac jp/—reiji/lect/alg01/sec2-1R html>.

Japanese Office Action dated Oct. 27, 2009 and English translation
thereofissued in counterpart Japanese Application No. 2004-257057.

* cited by examiner

US 7,716,267 B2

Sheet 1 of 39

May 11, 2010

U.S. Patent

[P —————————————————— A e e e

|
| (31avIdvA)
“ S1191a NOILY¥3dO
m 40 ¥39NNN
|
! . Y\ Y 1IN2¥ID
| ;= x -+ (Wvd) TOYLNOD
| NOILO3S |NOILYINDIVD
! u_owm_rwm___m_:z |-UB} |.S0D |_UIS UB} SOO UIS y3LSI93Y TVINIO3d
m <SNOILONNJ AYV.ININITI>
“ v —+} > INOY WYY90Yd
i QOHL3N NOLM3N
! (NOILOVY4 GINNILNOD
! 'SIYAS DIY1INOTOYIJAH)
' [IngoxaANos| FYINWEOL IONIHENOIY
| 31avivA NOILONNS
! NOILNGIY1SIa TvOILSILVLS
! NOILONNA VI03dS
m <SNOILONN4 GIONVAQY> |
00Z

U.S. Patent

May 11, 2010

Sheet 2 of 39

FIG. 2A

US 7,716,267 B2

- —————— " — = - ——

OPERATION RESULT

* TYPES OF OPERATIONS

(FOUR ARITHMETICAL OPERATIONS,

ELEMENTARY FUNCTIONS, ADVANCED FUNCTIONS)
*DATA TO BE SUBJECTED TO OPERATION

(NUMBER OF OPERANDS, NUMBER OF OPERATIONS)
- NUMBER OF EFFECTIVE DIGITS

MACHINE PROGRAI\>

K1

200

!

? —

ARITHMETIC UNIT

<OPERATION RESULT

* DIRECT

* INDIRECT

ST T T T T T T TSt T T T T T T T T T T T T T T T T T T
OPERAND i

]

INSTRUCTION "‘N‘E%%E‘S%I‘:“T i
PORTION | i
OPERATION | !

____DIGITS ____i :

]

VARIABLE PARAMETER |

MEMORY SECTION E

]

INSTRUCTION '
PORTION OPERAND NUMBER OF E
_____________ PORTION OPERATION :
DIGITS |

i

A |

]

J l

|

|

1

ADDRESSING

B et

ADDRESSING

US 7,716,267 B2

Sheet 3 of 39

May 11, 2010

U.S. Patent

NOILO3S AHOW3W ¥313NVHVd I18VIHVA

A M Sd31SIOIY

"

|

m 0cc~— T m ¥3INNOD

| AYHD0Nd

| Y

| N

}) "

w TYNOIS TOHLNOD~<—{y 3o o _ do | 112

|) |

“ oLz i ro

| P NOLLONYLSNI

| Y V 13! NY3O0Nd

| b ! o woromas -4

_ - . ' 1h

| e beis [<—{¥OL0T S|, RyaTNno] | < ST o

LT PES beng yez™ SS34AAvYL_ opg L___i{ree

“ -<{Inog < o

m Y Y B Leg

Ml LINA Peld {80103 13S| OLOFWS[T | | _

i |ONILNdWOD ped Y Zad _‘mm\/\ ".--1_ . _‘N\

i <04 penjlet+— L |} i ng |

_ LY Y T |/

| NOILO3S |

| N31S153Y 2gz| LNOHI0 | NOLLO3S N

_ N)_IL HOLVIN _ 9 OFN

| | . TYNOISON3 {

| 09¢ : > NOILONYLSNI 4%4

m omm\,_-Hm.N |||||| J |
002"

US 7,716,267 B2

Sheet 4 of 39

May 11, 2010

U.S. Patent

vmw

J4aav
d3ddn

m SSIAAY ¥IMOT

“ VLVa LNdNI , A \

m = S S

“ = 3 3

! i o i

]

m NOILYOd NOILYOd

| ININOdX3 AYYNIDVWI -

| (— — v
d] !

| L

|]

| vlva m z
 LNd1NO) _ A
| ! X SH3LSIO3Y
“ 0 b 2 € ¥ § 9 L 8 6 0 k 2Zb € ¥ Gl QYOM
m NOILO3S ¥3LSIOIY

1

| -~

m 092

|

U.S. Patent May 11, 2010 Sheet 5 of 39

FIG. 5

US 7,716,267 B2

Fuad , Suad I REGISTERS

|
00 X
l
01 Y
0|z
11 A

US 7,716,267 B2

Sheet 6 of 39

May 11, 2010

U.S. Patent

Gl = QYOM ON3
Gl 1sloiay

| |
! |
i |
! 1
“ |
“ [T _Jslioias |
| [T _suoiazl |
1 t
m [T _1sL9id 9} |
| |
m [T 1sli9a0z |
[T Isuoian |
| [T _1suoiasz |
| |
! [T _Jsuoiaze |
! |
m [T Jsuoiage |
|
| [T su9iaor m
I
m [T —1swuoia b |
! |
! [T _1suoiasy |
| |
m [T 1suoiacs |
| z=quom Lavis & [T Jsuoid9s SLI9IANOILYNIO !
m NOILYOd | m 40 438NAN
! AN3NOdX3 NOILYOd AMYNIOVIAI m _
m -A K v_ m
“ |
| |

0 V ¢ ¢ ¥ 6 9 L 8 6 0L I 2L € ¥ G gdOMm

U.S. Patent May 11, 2010 Sheet 7 of 39 US 7,716,267 B2

b EXTM]

m
>
=
<)
m
P
=
)

L 1: 1-WORD INSTRUCTION
0: SERIAL WORD INSTRUCTION

1: INDIRECT ADDRESSING
> START WORD {o: DIRECT ADDRESSING

1: INDIRECT ADDRESSING
— END WORD {o: DIRECT ADDRESSING

—— e —— s ———————————————————— o ——————————— ———————— = = an mm = = e e sam

US 7,716,267 B2

ANIVA AHVHLIGEY -«

Sheet 8 of 39

May 11, 2010

U.S. Patent

A H3LSIOTH NI GTHOLS A VLYA A ¥ ¥3LSIOTY NI GHOM HL-U NI 3FHOLS INTVA :uY
M H31SIO3Y NI G3HOLS M VLVQ M NOILIJQV :aaV
« ONISSIYAAYV | o
MY — AA+MY MM | A X 4 b aay | ONSSEREYE gwomt 1w (H)
_ | ONISSIHAQY | I
- i ONISS3YAAV | L
GLX — AA+GLX AA+GLX A G 110 aaY | YTISSRigN | QHOML 1 11O ()
GLX — FA+GLX PA*GIX | vA G | 100 agv | ONESTRIGAYE - gyomL 1 100 (3)
1 |
1) T
M A — M AR | AtmnX | WA X ok aav | ONISSIEAAY qyom vivas! ol | (@)
M~tX M~ A~ PX | AsM~tX | vA X | oor aav | ONISSIHQAV: qyom vimas! ool (0)
G~ AX = Gl AsSL~AX | A3GL~AX | A 61X | 010 aav | ONISSRMAAY i quom wiuas) oo | (@)
] T T
GL~¥X o Gl~PA*SL~ X | A+GL~bX | vA GIX | 000 aav | ONIBSIIAAY iquom viast oo | (v)
NOILYOd | NOILYOd [9NISSI¥AAY | NOILONHLSNI |
NOILV¥3dO OINOWINW | ANVYH3dO | AYVYNIOVINI | 1O3dIONI | Q¥OM-L {3NTVA
NOLLONYLSNI /LO3MIa | VIE3AS SNd3llvd
S31dWVX3 NOILONNA 1X3

US 7,716,267 B2

Sheet 9 of 39

May 11, 2010

U.S. Patent

NOILOSS AJOWIN S LINVavd TTaviavA cle
| A M SHILSIOF N
026~ — T u ¥3INNOD
! WYHO0dd
L .ﬂlll.“ N\ *
o
TYNOIS TOHINOD <—{N SIS do | LLE
ole”™ .| toy
;T NOILONYLSNI
Y Y 1133, WYE904d
v ‘ Nmmfmohm:mw$ 113
- * D] | 15
JYTTA) PeS [<—{40L0F1IS| o TN3INNOD < R WoY
|||||||||||| peS< | g SS3dAav} __ oye T Y45 WYHO0dd
<{inog [Pens|< 433 n...z.L_
— LR boe
1IN pel4 (<—H¥0L0313s|L OL03TAS[E | |, !
oz_Sn_s_ook peq mmm\/\ _‘mm\/\ - lm\
04 |pen [« 1 Ng !
2 2 P
NOILO3S | |
| (1o NOILO3S
N mEmMomm CSE T _HOLWW | HOLV] omm
| _ TWYNOIS ANI N
0L€ 09€¢ | vmm\,ﬂvl_lzo;%%mz_ pLE
--------------@.mm.\.,.wﬁ...ﬂ..ﬂw.l.......l....; ..
00"~

U.S. Patent May 11, 2010 Sheet 10 of 39 US 7,716,267 B2

T

EXTI2] | EXT[1]

[}
[}
]
[}
- A

EXT[4] | EXT[3]

. J

|, {1: 1-WORD INSTRUCTION
0: SERIAL WORD INSTRUCTION
01: INDIRECT ADDRESSING (v)
START WORD < 10: INDIRECT ADDRESSING (i)
00: DIRECT ADDRESSING

1: INDIRECT ADDRESSING
> END WORD {0: DIRECT ADDRESSING

— e e e

US 7,716,267 B2

Sheet 11 of 39

May 11, 2010

U.S. Patent

L1913 aNZ9 LI9Ia LSV @2_@5 |
L191a 1519 @&_@_o 4

1191Q HL09 @E_o_o £
1191 H166 @wco_o ¥
11910 HL8S / gﬂ_wa g

] .
] .

._._o_o_._._.nm:___:____________________R_mtw_n_mm

-
|
|
|
|
i
{
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
1
I
|
| . .
|
|
|
[}
|
|
|
1
!
!
t
]
|
l
i
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

LIOIGHLLL _:__:______:______:___:________________________Zm:o_n_wm
1191 H101 _:_____________:___:_::_________________________Zm_._w_n_mm
1I91a H16 _____:______:__::::___:__:___:__________:____x_mtw_n_vm

LI9Ia H18 =

s1191a S5

JYOM LuVYLS E%Eut__:______::____:________::_______x_ zo_%m_mm__mm

| NOLMOd ! “ _

| ININOdX3_ | NOILHOd AYYNIOVAI 1 O Y3ANNN |
—1‘ »~

y anan 3

|
o[Tl Tl dleleol e ls ol ok el o e S e bbb] g 01540

|
0 I 4 € 14 G 9 L 8 6 0L L 4 €l 145 Sl NOILVYN9IS3a m
JyoMm !

0
<
o

US 7,716,267 B2

Sheet 12 of 39

M IX =M~ IAM~ X | Atm~IX | WA X 1 00LL aay | ONISSIHAAY | qyom Twiy3s! ooLl

1034IANI |

| 43LSIOTY NI FHOLS ! VLva ! ANTVA ANVHLIGNY -
AMILSIOTY NI QIHOLSAVLVAA ¥ ¥ILSIOTH NI LIDIA HLU O QHOM HL-U NI GIHOLS INTVA U
M ¥3LSIOTH NI G3HOLS M YLYQ ‘M NOILIGaV :aqv
- ONISSIHAQY ! !
MX — | A+MX Aewx | WA X ons dav | ONSSEREY L avomrt | iou (L)
- ONISS3HAAQY | - "
MY = AA+MY A | WA X 1nor aav | ONSSEIRGY L adomt | biol (S)
— ONISSIHAQY | L
MX = PA+MX vA*WX | vA X 1 1oor aay | ONSSEEEY | awomet t ook ()
- ONISSIYAAY | L
GLX — IA+GLX LA+SIX | WA X | loro aav | ONSSRIAAY quom-r 1 roko ©)
— ONISSIYAAQY | o
GLX — AA+GLX MegX | WA @ix 100 aav | ONSSEIROYE quomel | oo (d)
GLX — PA+GLX PA+GLX | vA SIX | 1000 aav | ONIESIIAAY . qyom- {1000 (0)

|
000. aay | ONISSFHAAY : qyyopn 4<_mmmw 0001 (1

M~ PX =M~ PAFM~ PX | A+M~PX | PA .X 1034IANI |

Gl IX—Gh~ IA+GL~IX | A+GL~IX | +A SIX ! 0010 QQV w@mmm_y%_n__jomo;é_mmwm 0010 O

ONISSINAQY | “
0100 @av | DNIISICHLY L a¥om Tviast 0w00 | ()

GL~AX = GL~AA+GL~AX | A+GL~AX A GLX

May 11, 2010

G~ PX Gl VA+SI~YX | A*SL~PX | PA SiX | 0000 aav | ONISSIIAAY: quom viuas; cooo | (1)

]
|
T
i
“
“
[}
“
]
[}
m
m (N)
~o AX M~ ~ - _ ONISS3HAqy | !
M A =M A AAEM A A | AHM ~AY A =X “SS aav 1 535IaNI _om0>3<_mmm“ 0LO} (N)
{
|
"
“
|
]
“
“
“
J

NOILHOd | NOILYOd | 9NISSI¥AAV | NOILONHLSNI!
NOILVYIdO DINOW3NN | ANVH3dO | AMYNIOVAI |~ 1D3HIONI | GHOM-L !3NTVA
NOILONYLSN /10340 | /v¥AS | SNH3Llvd
SI1dNYX3 NOLLONNA 1X3

U.S. Patent

¢l Ol

U.S. Patent

May 11, 2010 Sheet 13 of 39 US 7,716,267 B2
DIGIT DESIGNATION
CALCULATION ROUTINE
READ INSTRUCTION DESIGNATED BY PROGRAM | _ 571
COUNTER FROM PROGRAM AREA
Y
READ VALUE | OF THE REGISTER [IN INSTRUCTION ST2
¥
SETi ST3
Y
[READ VALUE w OF THE REGISTER W IN INSTRUCTION |— ST4
Y
| SET w |~ ST5
ST6
W=157 NO
YES __ST7 v
CALCULATION END CALCULATIONEND | ST13
DIGIT=wx4 + 2 DIGIT=wx4 +3
> __ST8 >
READ i-TH TO (i+3)-TH READ -TH TO (#3)-TH |~ ST14

DIGITS IN REGISTER X

Y ST9
READ i-TH TO (i+3)-TH
DIGITS IN FéEGISTER Y

DIGITS IN REGISTER X

READ i-TH TO (i+3)-TH
DIGITS IN IiEGISTER Y

EXECUTE CALCULATION
ACCORDING TO INSTRUCTION
BY COMPUTING UNIT AND
STORE CALCULATION
RESULT IN i-TH TO (i+3)-TH

EXECUTE CALCULATION
ACCORDING TO INSTRUCTION
BY COMPUTING UNIT AND
STORE CALCULATION
RESULT IN i-TH TO (i+3)-TH
DIGITS IN REGISTER X

DIGITS IN REGISTER X
S ST11
NO

ST1 O i+4<
LAST CALCULATION
DIGIT?

—sT12

[i+aoi

ST17

i+4<
LAST CALCULATION
DIGIT?

Y __ST15

ST16

US 7,716,267 B2

Sheet 14 of 39

May 11, 2010

U.S. Patent

A H3ALSIDTH «— 1 + A ¥31SI93Y
() [Z] 1

() [[t [€]
13S X YILSIOTY « Z HALSIOFY - X d31SI93d

40 NOILOVHLANS HLIM NOILVH3d0 31NnO3X3

_ (11910 1 NOILLYOd ¥3931NI) SI OL 1191d AN3 NOLLYINDTYD ANV
(L1913 L NOILHOd TYWID3A) 29 OL LI91d LYVLS NOILYINOTVO ¥ALSIOAY L3S

Z431SI1934 < IxA ¥31SI93Y

A H3LSIOTFY «—| + A ¥3ILSIOIH VHALSIOFY «|+VY ¥3AL1SIOIY
() H @ (1) H _M_

0=V H3lSIO3d 0=A¥3LSIOFH € =X d3IL1SIO3d

s > ———— ——— o — o - —_ = = = = = = = = = = . A~ ————————— o = o o " o = = = = = = = = e = ——— T — e - ——————————

US 7,716,267 B2

Sheet 15 of 39

May 11, 2010

U.S. Patent

|

|

m AYILSIOTY « L0+A ¥ILSIODIY

i (o4)- [7€] [£7]

|

m 6)--[110 68°)) 002

| 135S X ¥3LSIOFY + Z ¥ALSIDTY - X yILsoIy ||| (6 LLL] 7€l (04)
m 40 NOILOVHLENS HLIMNOILVE3dO ALND3XA [| (g)- [6 8] +- ¢

L (LIDIA 1 NOILYOd d393LNI) SL OL 191G ANI NOILYIND VD ANV 00 2 [~
| (L1912 NOILYOd TYNID3A) 09 OL 1191 LYVLS NOILYIND VD ¥31SID3Y 13S ¢

m Z ¥31SI93Y « L'0x A ¥3LSIDFY F r

m (8) - [681] 7] __&r

! AYIALSIOAY — L0+ANHILSIOTY YV HILSIOTY « L 0+V H¥ILSIOFY | (9)- (£ L

i (1) [LZ] [2] (9) [LL] 1

|

US 7,716,267 B2

Sheet 16 of 39

May 11, 2010

U.S. Patent

(€1)--1620L°0 €ve
A YH31SIO93Y « €00+ A H3LSIO3d VY H31SI193Y « €0°0+V H3LSIO3Y
(L) [ere ve) (Le)-1€L°0 Ll

AYILSIOTY « €0°0+A HILSIOIN
(L) |ot'€E] €Y'E

(vL)--1L£00°0 62010 [11°0 |
138 X H3LSIOFY « Z ¥31SIOFY - X ¥31SIO3Y
40 NOILOVH18NS HLIM NOILYY3dO 31n03X3

) (L1913 L NOILYOd ¥39D31INI) §1 OL 11910 AN3 NOILYINDTVO ANV
(L1913 ¥ NOILYOd TVINIDTA) 85 O 11910 LHVLS NOLLYINDTYO ¥31SIO3Y L3S

Z H31SIDTY « €0°0xA HILSIOTY

(p1)-- (2] OvE] - (S))
(€L)--- (6204 €
0041 Eve| - (C1)
68L- L
002 L2
|- L
___ £ |
(b)) (€ L 1]

US 7,716,267 B2

Sheet 17 of 39

May 11, 2010

U.S. Patent

A H3LSIOFY « 2000+ A ¥3LSIOAA
(02) - | ¥9¥'E cor'e

(61)++-1941000°0] [F269000] [00L2000]

13S X ¥31SI939 — Z ¥31SI193 - X {31893
40 NOILOVY19NS HLIM NOILYH3dO 31NJ23X3
. (LI91Q | NOILYOd ¥39ALNI) SI OL 1I191d AN NOILYIND VO ANV
(1191 9 NOILYOd TWWIDAA) 96 OL 1191d 1HV1S NOILYINDTVD ¥31SIO3y 138

Z {31893y « 2000*A 431S193d

(61) [9LH] [Fore] -+ (02)
(81)[F269- ¢

00l L 2oveg] - (LL)

6col- €

00kl £ve
681 L
00¢ Le
b= b
(W I

¢ £ Ll

(81)- [¥26900°0 [2or€]
A Y3ALSIDAY « Z000+AYILSIOTY ¥V HILSIOIY — 200'0+V ¥3LSIOIY
(21) - [EarE] 97 E] (94)[2ELV] EL)

US 7,716,267 B2

Sheet 18 of 39

May 11, 2010

U.S. Patent

_.
i
“
"
“
|
m 13S X J31S1934 < Z ¥31SI193YH - X ¥31SI193Y
|
|
“
"
|
1
!

AY3ALSIOFY « | x€

(52) - [€]
g¥HILSIOTY L x Lx€

(v2) - [€]

(€2) [d] M [

40 NOILOVYH18NS H1IM NOILYY3d0 31NO3X3

(LID1a L NOILYOd ¥3O3LNI) 1 OL LI91a ANT NOILYINDTVO ANV
(1191a | NOILYOd TYINID3A) 29 OL LI91d LYVLS NOILYINOTVYO ¥3LSIO3Y L3S

ZH3ALSIOTH —Lx L x |
@2) [
V ¥3LSIOTFYH — | +V ¥ILSIOTFY

(12)- [[0]

0=V H31SI93d 0=MYILSIOFY 0=A¥ILSIOFTY € =X dI1SIOTH

US 7,716,267 B2

Sheet 19 of 39

May 11, 2010

U.S. Patent

o - - ——— ——_— - — = = — = = = —————— = — — - ——— i — - — — — — — — —— - - ——— =~ T —— - -

{X)

(62) -

. O3 (82) E

(L1913 | NOILHOd ¥393LNI) (22)-[21]

(SLIOI0 € NOILYOd TYWID3a) 65 0L LIDIa SIS
19VLS NOILYIND WD walsioag 13s | (92~ [k

AYHALSIOFY <L x€
@) -r] [0

QY3LSIOTY <V IxPlxE
-89 [1]

ZY31SIOAY «v'0xy0x 0

[¥90°0

Z Y3LSI93Y « ¥ 0x¥'0xA ¥31SIO3Y

[€]

000°¢ Z ¥31SI93Y ¥ 0xM ¥ILSIOTY

[€]

Gl Ol 1191 AN3 NOILYINDTVI ANV Vv 431SI93Y «—H0+V ¥ILSIOTY

Y

(ze) (i1€)
[067Z] [0€] [00€]
3
08¥|-
00Z |-
0002 0€ 00€
}
_EL
a3

US 7,716,267 B2

Sheet 20 of 39

May 11, 2010

U.S. Patent

AN3LSIOTY —pb' L xE
(6€)--|2E ¥
g HILSIOTY by Lx P LxE
(8€) -+ [802¢2°9
Z ¥31SI93Y —$0'0x¥0'0x¥00
(9¢) -+~ [¥90000°0
Z ¥31SI93Y —$0'0x¥0°0xA ¥IL1SI93Y

X 4318193 « Z 318193 - X ¥ALSIOF| (¢¢) --[Z7500°0 7]
[008020°0] [00cS€z0] [00952°0] 2 43LSIOTY — 0 0xM NI LSIOTY

X Y31LSI93Y « Zy31SI193 - X ¥3.1S193d
(2¢)--[910¥L00] [#90000°0] |080PLOO|

X J3LSID3Y « Z JALSIOTY - X ¥31S193d
(080¥L0°0] |02.900°0] [008020 0]

(LIDI] + NOILHOd ¥3D3IN)) | (v€)~[25Ez0 88’
S1 0L 1191 AN3 NOILYINDTYD ANY b0
(SL191d 9 NOILYOd TvINID3A) 95 OL Li9Iq Ammm_..m%_wm_x r00+v mﬂm_wmm
LAVLS NOILYINDTVD H3LSIOFY 138

~-1910¥L] [CE¥| [BOZZY)

-1
El
~-1002S€2-

000952 02y 0088S

08v-
00¢
000

14
0

|
€

8
0
0

14
¥
0

4
€

e e e e e e i A S S mm T S e e e W % W e ™ e e - - e oy

US 7,716,267 B2

Sheet 21 of 39

May 11, 2010

U.S. Patent

| waoL || m
002 — 1INONID NOILIGaY |
| EEW_._V\ __D_SW_._V\
m 1INo¥ID ——B0.L2 |
! POLZ —~ HOLDIN3S NOILYONdILINW m
" qo.¢c _
" A/ 2012 4p “
“ oL 1L 1y N “
| | v1va |
m yagy || | #4AvId | Q9L Adiann— !
i o) !
A | @Mw .. __
| Sy = walsioa daLsioRs K ooy
L 7S 7 -z
| eovz 2092 || rygifb . 092 q0%2
. naor ||| [3/4 3Lm 0.2
N | M 1) m

US 7,716,267 B2

Sheet 22 of 39

May 11, 2010

U.S. Patent

Y¥31SI93d S 40 §S3004d

“
“
|
| 1INOHID NOILIAAY NV
i LINDHID NOILYINAILINN 40 583008d || 43151934 440 88300¥d \\\\\\
_ WxPA+PX | WxpAspX | WxZA+IX | WxZA+ZX | Wx0A+0X | Wx0A+0X mo"h\m_m_mw_kw@
i 4/4 Qv3y
| X 6X oX £X £X LX LX 10 IhENES
! ¥0L103713S
“ 6X 6X X £X X LX 0X So10d1
! | " | | "
. _ | | | |
] |]] 1 | [}
8 " . m m | |
| V725X X i | " ﬂ |
o | ! | | m
o) ' [S RN TITARR (AR TRt i |
b ! 7. \\\\\\\\ | !
P “ 7EX X7 W m>+mx;_¥s_xm>+wx X ‘ZX av3y | "
i m AN L) " R _ !
] 1] 1 l |]
I | | | “
| _ “ ; Z X 0X _ L
! WxLA+LX [| Wx0A+0X [AX ‘0X av3d
o m m ! PAEI LY M N7
] 1 | |] |] [}) |
m “ 9 | / | 0 " G | v " € | Z ") |
D o e e i mm e —c e —— e c s ——— e — ;= ———————— T — e

US 7,716,267 B2

Sheet 23 of 39

May 11, 2010

U.S. Patent

17NS34 NOILYHE3d0 3AIF03Y

Zn

—

\

/l

00}

S11910 IAILD3443 40 Y3aNNN -

(SNOILY¥3dO 40 ¥IAWNN ‘SANYHIJO 40 ¥IFGNNN)

NOILVY3dO O1 d3103rans 39 OL viva-

(SNOILONNZ QIDONVAQY

‘SNOILONNS AYVININIT3 ‘'SNOILYHIHO TYOILIWHLIMY ¥NOS)

SNOILVH3dO 40 S3dAL -

<V1vad NOILVY3dO 40 1NdNi>

OILINHLIEY

LINN
asn

C

%

00t

——1| v]lvd NOILYY3IdO aN3s

U.S. Patent May 11, 2010 Sheet 24 of 39 US 7,716,267 B2

400
e
402 —| FLASH MEMORY| —» ROM 404
g———
COMMUNICATION
401~ CPU <> CONTROL SECTION[405

403 — SRAM L »] SHARED MEMORY (— 406

U.S. Patent May 11, 2010 Sheet 25 of 39 US 7,716,267 B2

FIG. 25A FIG. 25B FIG. 25C

COMMUNICATION

CONTROL SECTION CPU
T41 >
T3 Y S y ST51
INPUT OPERATION RECEIVE OPERATION
DATA TO PC DATA FROM PC SESET
y __ST32 y . ST42 CANCELED
SEND OPERATION WRITE OPERATION ?
DATATO DATA IN YES
ARITHMETIC UNIT SHARED MEMORY _.-ST52
y __ST43 ENABLE BUSY
ST33 OPERATE CPU SIGNAL
RECEIVE (CANCEL RESET) y - ST53
OPERATION > READ OPERATION
RESULT ST44 DATA FROM
? SHARED MEMORY
YES
RECEIVE OPERATION - SPERATION
RESULT __ST45 PROCESS
y ST35 STOP CPU 1 __sTs5
DISPLAY OPERATION (DURING RESET) P
RESULT WRITE OPERATION
y . ST46 RESULT IN
READ OPERATION SHARED MEMORY
DATA FROM v ST56
SHARED MEMORY
DISABLE BUSY
y . ST47 SIGNAL
SEND OPERATION [
RESULT TO PC

U.S. Patent May 11, 2010 Sheet 26 of 39 US 7,716,267 B2

FIG. 26

(OPERATION PROCESS)

READ OPERATION PROGRAM CORRESPONDING
TO OPERATION TYPE INCLUDED IN — ST61
OPERATION DATA FROM ROM

Y

SET THE NUMBER OF CALCULATION DIGITS
AND CALCULATION TYPE IN OPERATION PROGRAM
IN ASSOCIATION WITH THE NUMBER OF S
EFFECTIVE DIGITS INCLUDED IN OPERATION DATA,
AND EXECUTE EACH CALCULATION INSTRUCTION
TO PERFORM CALCULATION IN OPERATION PROGRAM

US 7,716,267 B2

Sheet 27 of 39

May 11, 2010

U.S. Patent

17INS3H NOILYHIdO FAIROIY
od
. 1INN
\ T/ g OILIWHLIYY
0 T asn
2 LN N
008

~

\\ 00L

S1191d AILOT443 40 H3IFINNN ¢

(SNOILYHIHO 40 ¥IFWNN ‘SANVHIHO 40 ¥IGNNN)
NOILVH3d0 O1 d3103rdnNs 39 0L viva-

(SNOILONNL A3ONVAQY

‘SNOILONNA AMVINIWITA ‘SNOILYHYIHO TYOILIAWHLINY ¥NO4)
SNOILYY3IdO 40 S3adAL -

|
“
|
“
|
"
_
“
| <V1vQ NOILVY3dO 40 LNdNI>

| V>

——| WVYY90Hd NOILVY3dO aN3S

U.S. Patent May 11, 2010 Sheet 28 of 39 US 7,716,267 B2

FIG. 28
PRIOR ART

USER APPLICATION

COMMERCIALLY
AVAILABLE
APPLICATION

COMPILER
DECIMAL < BINARY
CONVERSION

OS

CPU
BINARY ARITHMETIC CONTROL CIRCUIT
(INTEGER + FLOATING POINT)

U.S. Patent May 11, 2010 Sheet 29 of 39 US 7,716,267 B2

FIG. 29

/ —— 101
/

“Tr4——— 104

NUMBER OF DIGIT
EFFECTIVE DISTINCTIVE
\\L__DIGITS DISPLAY)

__

103d 103g!

B 1032/()A(]\EOSf y10%

C JC) C JC)
103b

JC O)C)y Jey

(
(OO
(OO

H{---103

o N N . N N

bl 7 8 9]: DEL AC

::L \ J \ TN J \ J

| |

Eir W s N\ Y E e N\ ~

] 4 5 6 ! X -
103a U\ J J \0 J 1\ J \ _J/

N !

:if) 4 N\ (™ : " ™ (" ™

N 2 3 i + -

::& J U J _J i — J

I

Ei(~N N ™ i . N

it 0 ' EXE |+1~—103c

'|L J . J \. JUO J \. |

U.S. Patent May 11, 2010 Sheet 30 of 39 US 7,716,267 B2
120
Y
CPU
]
150
~
130 -< ROM
o
- 160
INPUT SECTION >
o
140 | RAM
o
DISPLAY SECTION |« 170
S
DECIMAL COMPUTING UNIT
- PROGRAM ROM 1171
ARBITRARY
DIGIT NUMBER T+172
180 OPERATION PROGRAM
PLURAL OPERATION H-l.173
TYPES
Y

U.S. Patent May 11, 2010 Sheet 31 of 39 US 7,716,267 B2
FIG. 31A
ROM — 151
FIRST OPERATION DISPLAY PROGRAM +— 152
FIG. 31B
RAM 161
OPERATION-DIGIT-NUMBER STORAGE AREA [T~ 1611
OPERATION-TYPE STORAGE AREA +— 1613
OPERAND STORAGE AREA 1615
UNDERFLOWED-DIGIT-NUMBER STORAGE AREA (1— 1617
EFFECTIVE-PRECISION-DIGIT-NUMBER 1619
STORAGE AREA

U.

S. Patent May 11, 2010 Sheet 32 of 39 US 7,716,267 B2

FIG. 32

(FIRST OPERATION DISPLAY ROUTINE)

5 A7
INPUT THE NUMBER OF | A1 DISPLAY FIRST OPERATION
OPERATION DIGITS (DESIGNATED DIGIT OPERATION)
¥ RESULT
[DESIGNATE OPERATIONTYPE _ |—A3 A9
Y
NUMBER
| INPUT OPERAND [~ A5 OF UNDERFLOWED
¥ DIGITS TO BE

GENERATE MACHINE PROGRAM + D|3P';‘\YED

CAUSE DECIMAL COMPUTING UNIT ! A1
TO EXECUTE FIRST OPERATION [— A7 YES
(DESIGNATED DIGIT OPERATION) DISPLAY THE NUMBER OF

Y UNDERFLOWED DIGITS

GENERATE MACHINE PROGRAM +
CAUSE DECIMAL COMPUTING UNIT
TO EXECUTE SECOND OPERATION [—A9

NUMBER
(ADDITIONAL DIGIT OPERATION) OF EFPESTVE NO
PRECISION DIGITS TO BE
NORMALIZE FIRST OPERATION DISPLAYED
(DESIGNATED DIGIT OPERATION ?
RESULT AND SECOND OPERATION [—A11 CES A25
(ADDITIONAL DIGIT OPERATION) —
RESULT DISPLAY THE NUMBER OF
17 EFFECTIVE PRECISION DIGITS
COMPARE VALUES OF DIGITS OF
FIRST OPERATION A27

(DESIGNATED DIGIT OPERATION)

RESULT WITH AND — A13 OF INCREASE
SECOND OPERATION DIGITS TO BE
(ADDITIONAL DIGIT OPERATION) DISPL7AYED
RESULT TO DETECT THE NUMBER OF : A29
UNDERFLOWED DIGITS CALCULATE YES
¥ DISPLAY SECOND OPERATION
NUMBER OF (ADDITIONAL DIGIT OPERATION)
EFFECTIVE PRECISIONDIGITS = | ¢ RESULT
INPUT NUMBER OF Ve
OPERATION DIGITS - A31

NUMBER OF UNDERFLOWED DIGITS
TO DETECT THE NUMBER OF UNDERFLOWED NO
EFFECTIVE PRECISION DIGITS PORTION TO BE DISPLAYED

[DISTINC':PTIVELY

DISPLAY UNDERFLOWED PORTION IN FIRST OPERATION
(DESIGNATED DIGIT OPERATION)
RESULT AND OTHER PORTION DISTINCTIVELY
IN PREDETERMINED DISPLAY MODES

U.S. Patent May 11, 2010 Sheet 33 of 39 US 7,716,267 B2

FIG. 33A

= ARBITRARY DIGIT OPERATION

@ NUMBER OF
4010 —| OPERATION DIGITS DIGITS

& OPERATION TYPE v|—+ 4013
& OPERAND —_ 1 4015

4011

T —

< OPERATION RESULT — | 4017

< DIGIT INCREASE L 4019
4021-| DISPLAY 4023

< NUMBER OF OEFFECTIVE
UNDERFLOWED PRECISION
DIGITS

P - o = e L — " . - —

NUMBER OF DIGIT

i 0
! EFFECTIVE DISTINCTIVE |} _]|
| |UNDERELOWED | ‘pRecision | "eriar pispLay |1 40%°

__

FIG. 33B

NUMBER OF DIGITS
4010 ~] OPERATION DIGITS

OPERATION TYPE [v|—+ 4013
© OPERAND X2

<O OPERATION RESULT | 1nx

< DIGIT INCREASE
DISPLAY

< NUMBER OF D
UNDERFLOWED E——— PRECTSION—T——]
DIGITS

NUMBER OF DIGIT

EFFECTIVE DISTINCTIVE
UNDERFLOWED INCREASE
DIGITS PRECISION DISPLAY DISPLAY

—1 4013a

U.S. Patent May 11

,2010

Sheet 34 of 39

US 7,716,267 B2

4011a
E= ARBITRARY DIGIT OPERATION —eeee————
NUMBER OF = -
4010 OPERATIONDIGITS L t8.f | DIGITS £ 4013a
© OPERATION TYPE (A+3-1+ [+|
OPERAND I }-----1 40152
< OPERATION RESULT |
<O DIGIT INCREASE | 7
DISPLAY
< NUMBER OF O EFFECTIVE '
UNDERFLOWED |_—__| PRECISION I
DIGITS
NUMBER OF | ecreeecmve DIGIT DISTINCTIVE
UNDERFLOWED [srreic & | INCREASE DISPLAY
DIGITS DISPLAY
& NUMBER OF
4010 OPERATION DIGITS 8 |DIGITS
@ OPERATIONTYPE | (1+x)3-1 1v]
© OPERAND 0.00123 |
O OPERATION RESULT [13.6045000 e-3+--""""" " N - -4017a
O DIGIT INCREASE |
DISPLAY
< NUMBER OF & EFFECTIVE
UNDERFLOWED : PRECISION
DIGITS
NUMBER OF | prrectivE DICIT DISTINGTIVE
UNDERFLOWED | poEord se | INCREASE DISPLAY
DIGITS DISPLAY

U.S. Patent May 11, 2010 Sheet 35 of 39
E= ARBITRARY DIGIT OPERATION e
& NUMBER OF
4010 OPERATION DIGITS 8 |DIGITS
@ OPERATIONTYPE | (1+x)3-1 [+]
@ OPERAND | 0.00123]
O OPERATIONRESULT | 3.6945000 e-3 |
& DIGIT INCREASE
4021 o Tospay’ | |
ONUMBEROF] & EFFECTIVE
UNDERFLOWED 3 PRECISION |:|
DIGITS
:NUMBER OF 4 peeeoqve |Nc?r|2%|;\r35 DISTINCTIVE
PRECISION NiSPLAY DISPLAY
E= ARBITRARY DIGIT OPERATION —nreeeeen—————
© NUMBER OF
4010 OPERATION DIGITS 8 |DIGITS
@ OPERATIONTYPE [(1+x)3-1 [v]
© OPERAND | 0.00123 |
OOPERATIONRESULT | 3.6945000 e-3 |
< DIGIT INCREASE r |
DISPLAY
<& NUMBER OF O EFFECTIVE
UNDERFLOWED :I PRECISION
DIGITS
NUMBEROF F DIGIT
UNDERFLOWED £ INCREASE D'%Tg‘é,ﬂ'\)’E
DIGITS DISPLAY

US 7,716,267 B2

.- 4023a

U.S. Patent May 11, 2010 Sheet 36 of 39 US 7,716,267 B2
= ARBITRARY DIGIT OPERATION mineneee———————
NUMBER OF
4010 OPERATION DIGITS 8 | DiGITS

4 OPERATION TYPE (1+x)3-1 [+]
OPERAND | 0.00123 |
OOPERATIONRESULT | 3.6945000 e-3 |
< DIGIT INCREASE P .

DISPLAY 13.6945056000 e-3 + | R— 4019a
< NUMBER OF

DIGITS

NUMBER OF
EFFECTIVE DISTINCTIVE
UNDERFLOWED | peecisioN DISPLAY
DIGITS
E= ARBITRARY DIGIT OPERATION —8"————————————
& NUMBER OF
4010 OPERATION DIGITS 8 | DIGITS

®OPERATIONTYPE [(1+x)3-1 [+]
@ OPERAND | 0.00123 |
OOPERATIONRESULT | 3.69455555) e-3 - S .. 4017a
< DIGIT INCREASE |

DISPLAY
< NUMBER OF

DIGITS

NUMBER OF DIGT [
UNDERFLOWED | EFFECTIVE 1 ncrease | DISTINCTIVE
DIGITS DISPLAY

U.S. Patent May 11, 2010 Sheet 37 of 39 US 7,716,267 B2

FIG. 37A
ROM — 153
SECOND OPERATION DISPLAY PROGRAM +— 154
FIG. 37B
RAM — 163
OPERATION-DIGIT-NUMBER STORAGE AREA [T— 1631
OPERATION-TYPE STORAGE AREA H— 1633
OPERAND STORAGE AREA +— 1635
UNDERFLOWED-DIGIT-NUMBER STORAGE AREA [{1— 1637

U.S. Patent

May 11, 2010 Sheet 38 of 39 US 7,716,267 B2
(SECOND OPERATION DISPLAY ROUTINE)
INPUT THE NUMBER OF B
OPERATION DIGITS
Y
| DESIGNATE OPERATION TYPE |—B3
Y
| INPUT OPERAND |—B5
Y
GENERATE MACHINE PROGRAM +
CAUSE DECIMAL COMPUTING UNIT |——R7
TO EXECUTE FIRST OPERATION
(DESIGNATED DIGIT OPERATION)
Y
GENERATE MACHINE PROGRAM +
CAUSE DECIMAL COMPUTING UNIT }— B9
TO EXECUTE SECOND OPERATION
(ADDITIONAL DIGIT OPERATION)
Y __B11
NORMALIZE FIRST OPERATION
(DESIGNATED DIGIT OPERATION)
RESULT AND SECOND OPERATION
(ADDITIONAL DIGIT OPERATION) RESULT
¥ ~ _B13
DETECT THE NUMBER OF CONSECUTIVE
0'S FROM LEAST SIGNIFICANT __B17
DIGIT OF FIRST OPERATION
(DESIGNATED DIGIT OPERATION) EXECUTE SECOND OPERATION
UNDERFLOWED DIGITS DIGITS OBTAINED BY ADDING
PREDETERMINED ADDITIONAL
NUMBER OF DIGITS
B15 AND DETECTED NUMBER OF
(NUMBER OF UNDERFLOWED DIGITS TO INPUT
UNDERFLOWED DIGITS + NUMBER OF OPERATION DIGITS
NUMBER OF OPERATION DIGITS) "
<= ADDED OPERATION
DIGIT NUMBER B19 — NORMALIZE SECOND
2 OPERATION RESULT
YES >l
ROUND SECOND OPERATION
B21 —{ RESULT TO INPUT NUMBER OF
OPERATION DIGITS
Y
823 —| DISPLAY SECOND
OPERATION RESULT

US 7,716,267 B2

U.S. Patent May 11, 2010 Sheet 39 of 39
= ARBITRARY DIGIT OPERATION DFiee—e————————————
& NUMBER OF
OPERATION DIGITS 8 DIGITS
4030 —
@ OPERATION TYPE (1+x)3-1 v
© OPERAND 0.00123
< OPERATION RESULT
& DIGIT INCREASE
DISPLAY
< NUMBER OF O EFFECTIVE
UNDERFLOWED PRECISION
DIGITS
NUMBEROF | crreomve DIGIT DISTINCTIVE
UNDERFLOWED | s~ dS | INCREASE DISPLAY
DIGITS DISPLAY
= ARBITRARY DIGIT OPERATION "iee"re—er————————
& NUMBER OF
OPERATION DIGITS 8 DIGITS
4030 —
@ OPERATION TYPE (1+x)3-1 v
® OPERAND 0.00123
OOPERATIONRESULT | {3.6945406 €-3 """~ ==--feeeo
O DIGIT INCREASE
DISPLAY
< NUMBER OF O EFFECTIVE
UNDERFLOWED PRECISION
DIGITS
NUMBER OF DIGIT
UNDERFLOWED E;E%%‘gﬁ INCREASE D'SD%';'DCLL'\}’E
DIGITS DISPLAY

-4031a

US 7,716,267 B2

1

DECIMAL COMPUTING APPARATUS,
ELECTRONIC DEVICE CONNECTABLE

DECIMAL COMPUTING APPARATUS,
ARITHMETIC OPERATION APPARATUS,

ARITHMETIC OPERATION CONTROL

APPARATUS, AND PROGRAM-RECORDED
RECORDING MEDIUM

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an arithmetic unit, such as
a decimal calculation apparatus.

2. Description of the Related Art

Arithmetic systems equipped with an arithmetic unit, such
as a CPU (Central Processing Unit), are popular. There are
various standards for an arithmetic unit, a memory and so
forth which constitute an arithmetic system. The ANSI/IEEE
754-1985 standard (hereinafter simply called “IEEE 754”) is
an operation standard defining, for example, a binary float-
ing-point operation. The IEEE 754 defines the numerical
form (precision) that is handled in a binary floating-point
operation in three types, namely, single precision (32 bits),
double precision (64 bits) and long double precision (96 bits).

FIG. 28 is a diagram showing one example of the logical
hierarchical structure of a conventional arithmetic system.
The arithmetic system has a hierarchical structure having a
CPU or an arithmetic unit as the lowermost layer, and an OS
(Operating System) or the basic software which controls the
CPU, a compiler which converts an overlying application
program written in a high-level language to a machine-lan-
guage program, a commercially available application, such as
spreadsheet software or wordprocessing software, and a user
application layered in order over the bottom layer.

As the conventional arithmetic system is built up as a
circuit which performs an operation with a given precision
(nmumber of effective digits) as defined in, for example, the
IEEE 754, it has the following shortcomings.

(1) Restriction on the Number of Effective Digits

The operation precision or the number of effective digits in
the arithmetic system comprising the conventional arithmetic
unit is limited to precisions defined by the operation standard
(three types in the IEEE 754). That is, an operation with other
numbers of digits than the specified number of effective digits
cannot be performed. This disables execution of an operation
with the exact precision required.

(2) Error in Binary Operation

As the arithmetic unit performs a binary operation, numeri-
cal data in the arithmetic system is expressed in binary nota-
tion. This requires binary-decimal conversion, so that an con-
version-originated error is inevitable. In convergent
calculation or the like, for example, every time a repetitive
operation is performed, the error becomes larger with the
restriction on the number of effective digits. To cancel the
error, binary operations should be performed with a precision
higher than the precision of decimal operations.

(3) Complex Program Writing Due to Restriction on the
Number of Effective Digits

The arithmetic unit is constructed in such a way as to
perform an operation with a precision defined by the opera-
tion standard. Therefore, a machine instruction code is writ-
ten in such a way as to perform an operation with an operation
precision (number of effective digits) of the arithmetic unit,
and the precision (number of effective digits) of an instruction
code is fixed. As the precision (number of effective digits)

10

15

20

25

30

35

40

45

50

55

60

65

2

cannot be designated in an instruction code itself, the preci-
sion should be coped with by a program, thus making pro-
gram writing complex.

SUMMARY OF THE INVENTION

Accordingly, it is an object of the invention to provide a
decimal calculation apparatus which can freely set the num-
ber of calculation digits at the time of performing calculation
with a calculation instruction, and efficiently executes calcu-
lation in the set number of calculation digits with small-size
calculation means

To achieve the object, according to one aspect of the inven-
tion, there is provided a decimal calculation apparatus which
performs multidigit decimal calculation with a number of
calculation digits set in a calculation instruction, and com-
prises:

a multidigit memory section (e.g., a register section 360 in
FIG. 9) capable of storing values with greater numbers of
digits than a number of digits of a predetermined digit unit in
a plurality of memory areas;

a calculation-instruction memory section (e.g., a program
ROM 310 in FIG. 9) which stores a calculation instruction
having a number of calculation digits and a type of calculation
set therein; and

a decimal calculation section (e.g., a computing unit 370 in
FIG. 9) which performs decimal calculation of sequentially
calculating numerical values of corresponding digit units
respectively stored in the plurality of memory areas of the
multidigit memory section, the digit unit by the digit unit in
the number of calculation digits set in the calculation instruc-
tion stored in the calculation-instruction memory section, in
decimal calculation according to the type of calculation set in
the calculation instruction stored in the calculation-instruc-
tion memory section, and sequentially writing calculation
results in the plurality of memory areas of the multidigit
memory section the digit unit by the digit unit.

BRIEF DESCRIPTION OF THE DRAWINGS

These objects and other objects and advantages of the
present invention will become more apparent upon reading of
the following detailed description and the accompanying
drawings in which:

FIG. 1 is a schematic diagram showing the fundamental
structure of an arithmetic unit embodying the invention;

FIG. 2A is a schematic structural diagram of an arithmetic
system according to a first embodiment of the invention;

FIG. 2B is a schematic structural diagram of the arithmetic
system according to the first embodiment

FIG. 3 is a circuit structural diagram of the essential por-
tions of an arithmetic unit according to the first embodiment;

FIG. 4 is a structural diagram of a register section;

FIG. 5 shows the correlation between upper addresses
Fuad and Suad, and a designated register;

FIG. 6 is a diagram showing a change in the number of
operation digits caused by a change in a start word according
to the first embodiment;

FIG. 7 shows the structure of an extended instruction code
EXT according to the first embodiment;

FIG. 8 shows the correlation between an extended instruc-
tion code EXT and an functional example of the arithmetic
unit according to the first embodiment;

FIG. 9 is a circuit structural diagram of the essential por-
tions of an arithmetic unit according to a second embodiment;

FIG. 10 shows the structure of an extended instruction code
EXT according to the second embodiment;

US 7,716,267 B2

3

FIG. 11 is a diagram showing a change in the number of
calculation digits caused by a change in a calculation start
digit according to the second embodiment;

FIG. 12 shows the correlation between an extended
instruction code EXT and an functional example of the arith-
metic unit according to the second embodiment;

FIG. 13 is a flowchart illustrating a digit designation cal-
culation routine;

FIG. 14 is a diagram illustrating a square root operation
routine in the arithmetic unit according to the second embodi-
ment;

FIG. 15 is a diagram illustrating the square root operation
routine in the arithmetic unit according to the second embodi-
ment;

FIG. 16 is a diagram illustrating the square root operation
routine in the arithmetic unit according to the second embodi-
ment;

FIG. 17 is a diagram illustrating the square root operation
routine in the arithmetic unit according to the second embodi-
ment;

FIG. 18 is a diagram illustrating a cube root operation
routine in the arithmetic unit according to the second embodi-
ment;

FIG. 19 is a diagram illustrating the cube root operation
routine in the arithmetic unit according to the second embodi-
ment;

FIG. 20 is a diagram illustrating the cube root operation
routine in the arithmetic unit according to the second embodi-
ment;

FIG. 21 is a block diagram of the components of a third
embodiment;

FIG. 22 is a diagram illustrating a timing chart;

FIG. 23 is a schematic structural diagram of an arithmetic
system according to a fourth embodiment;

FIG. 24 is a block diagram showing the structures of the
essential portions of a USB arithmetic unit;

FIG. 25A is a flowchart illustrating a communication rou-
tine which is executed by a personal computer;

FIG. 25B is a flowchart illustrating a communication rou-
tine which is executed by a communication control section;

FIG. 25C is a flowchart illustrating a communication rou-
tine which is executed by a CPU;

FIG. 26 is a flowchart illustrating an operation process
which is executed by the CPU;

FIG. 27 shows a modification of the fourth embodiment;

FIG. 28 is a diagram showing the logical hierarchical struc-
ture of a conventional arithmetic system;

FIG. 29 is a schematic diagram of a graph function elec-
tronic calculator to which the invention is adapted;

FIG. 30 is a block diagram showing the internal structure of
the graph function electronic calculator to which the inven-
tion is adapted;

FIG. 31 A is adiagram showing the data structure of a ROM
according to a fifth embodiment;

FIG. 31B is adiagram showing the data structure ofa RAM
according to the fifth embodiment;

FIG. 32 is a flowchart illustrating the flow of a first opera-
tion (designated digit operation) display routine;

FIG. 33A is a diagram showing one example of a display
screen to be displayed in the first operation (designated digit
operation) display routine;

FIG. 33B is a diagram showing one example of a display
screen when an operation type is designated;

FIG. 34A is a diagram showing one example of a display
screen when entry of the number of operation digits, desig-
nation of an operation type and entry of an operand are carried
out;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 34B is a diagram showing one example of a display
screen when the result of the first operation (designated digit
operation) is displayed;

FIG. 35A is a diagram showing one example of a display
screen when an underflow digit number display instruction is
given;

FIG. 35B is a diagram showing one example of a display
screen when an effective precision digit number display
instruction is given;

FIG. 36A is a diagram showing-one example of a display
screen when a digit number increase display instruction is
given;

FIG. 368 is a diagram showing one example of a display
screen when an underflow portion identification instruction is
given;

FIG. 37A is a diagram showing the data structure of a ROM
according to a sixth embodiment;

FIG. 37B is a diagram showing the data structure ofa RAM
according to the sixth embodiment;

FIG. 38 is a flowchart illustrating the flow of a second
operation (additional digit operation) display routine;

FIG. 39A is a flowchart showing one example of a display
screen when entry of the number of operation digits, desig-
nation of an operation type and entry of an operand are carried
out in the second operation (additional digit operation) dis-
play routine; and

FIG. 39B is a flowchart showing one example of a display
screen when the underflowed result of the second operation
(additional digit operation) is displayed.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

First Embodiment

A first embodiment to carry out the invention will be
described below with reference to the accompanying draw-
ings.

FIG. 1 is a schematic diagram showing the fundamental
structure of an arithmetic unit 200 according to the first
embodiment. The arithmetic unit 200 comprises a program
ROM which stores an operation program, an arithmetic con-
trol circuit which reads the operation program and runs it, and
a register section for temporarily storing operation data.

The number of operation digits (number of effective digits)
of the register section is variable to achieve a variable number
of operation digits in arithmetical operations of addition,
subtraction, multiplication and division, basic operations ona
square root or the like, and operations of elementary func-
tions, such as a logarithmic function and a trigonometric
function, and also achieve variable convergent conditions in
operations of advanced functions, such as special functions
and statistical distribution functions, and operations on recur-
rence formulae or the like. The arithmetic control circuit also
performs decimal operations to prevent occurrence of an error
originating from binary-to-decimal conversion.

A specific example of an arithmetic system equipped with
such an arithmetic unit.

FIG. 2A is a schematic structural diagram of an arithmetic
system S1. The arithmetic system S1 comprises a PC (Per-
sonal Computer) 100 and an arithmetic unit 200. The PC 100
and the arithmetic unit 200 are connected together by a com-
munication cable K1 like a USB (Universal Serial Bus) cable
so as to be able to exchange data with each other.

The PC 100 is achieved by a computer which comprises a
CPU (Central Processing Unit), ROM (Read Only Memory),
RAM (Random Access Memory), an input device, such as a

US 7,716,267 B2

5

keyboard and a mouse or the like, a display device, and a
communication unit having a connection terminal to which
the communication cable K1 is connectable. The PC 100
serves as a man-machine interface between the arithmetic
system S1 and a user.

The PC 100 generates a machine program based on the
number of operation arbitrarily designated by a user, the types
of operations (arithmetical operations, elementary functions,
advanced functions, etc.) and initial data values to be sub-
jected to operations, and transfers the machine program to the
arithmetic unit 200, which perform the operations. The
results of the operations done by the arithmetic unit 200 are
displayed on the display device.

The arithmetic unit 200 executes numerical operations
according to the machine program transferred from the PC
100, and, particularly, performs an operation on each of
instructions constituting the machine program in the number
of operation digits that is designated in that instruction. The
arithmetic unit 200 sends the operation result to the PC 100.
The numerical operations which are executed by the arith-
metic unit 200 are classified into two, (1) a direct addressing
type and (2) an indirect addressing type, according to how the
number of operation digits is designated.

As shown in FIG. 2B, the direct addressing type is an
instruction type to directly designate the number of operation
digits in an operand portion. The arithmetic unit 200 executes
a numerical operation on an instruction in the number of
operation digits designated in the operand portion of the
instruction.

The indirect addressing type is an instruction type to des-
ignate the location where the number of operation digits is
stored (i.e., to indirectly designate the number of operation
digits). The arithmetic unit 200 reads the number of operation
digits from a location designated by an instruction, and
executes a numerical operation on the instruction in the read
number of operation digits.

FIG. 3 is a block diagram showing the circuit structure of
the arithmetic unit 200, and shows the essential portions that
are associated with execution of numerical operations. Refer-
ring to FIG. 3, the arithmetic unit 200 comprises a program
ROM 210, a program counter 212, a latch section 214, an
instruction decoder 216, a variable parameter memory sec-
tion 220, selectors 231, 232, 233 and 234, an address counter
240, a register section 260, a computing unit 270, and an end
decision circuit 250.

The program ROM 210, which is constructed by, for
example, an EEPROM (FElectrical Erasable Programmable
ROM) that is an electrically programmable memory, stores a
machine program transferred from the PC 100 as a program
instruction 211. The program instruction 211 is comprised of
one or more calculation instructions in each of which the type
of calculation and the number of calculation digits are set.
Program instructions 211 stored in the program ROM 210 at
addresses indicated by the address counter 240 are read out
one after another and are stored in the latch section 214. The
program ROM 210 may be replaced with an electrically pro-
grammable non-volatile RAM or the like. The latch section
214, which is constituted by a programmable memory, such
as RAM, holds a single instruction read from the program
ROM 210.

A single instruction comprises an instruction portion 10
and an operand portion 20.

The instruction portion 10 has an instruction code OP and
a 3-bit extended instruction code EXT. The operand portion
20 has afirst operand portion 21 and a second operand portion
22 each consisting of six bits. The first operand portion 21
comprises 2-bit data Fu and 4-bit data F1, and the second

10

15

20

25

30

35

40

45

50

55

60

65

6

operand portion 22 comprises 2-bit data Su and 4-bit data S1.
The details of those data will be given later.

The instruction decoder 216 decodes the instruction code
OP latched in the latch section 214, and outputs various
control signals for execution of various control circuits in the
arithmetic unit 200. For example, the instruction decoder 216
sends the computing unit 270 an operation control signal for
allowing the computing unit 270 to execute the decoded
instruction.

The variable parameter memory section 220, constituted
by a RAM or the like, has registers W and V each capable of
storing 4-bit data. In case of indirect addressing, the number
of operation digits is stored in the registers W and V which
store values to be the number of operation digits in a change-
able manner.

The selector 231 receives the data F1 latched in the latch
section 214 and data stored in the register W (hereinafter
called “data w”), and receives data of the third bit in the
extended instruction code EXT (hereinafter called “data EXT
[3]) as a select control signal. The selector 231 selects and
outputs one of the two input data according to the select
control signal or the value of the data EXT[3]. Specifically,
the selector 231 selectively outputs the data w when the value
of the data EXT[3] is “1”, and selectively outputs the data F1
when the value of the data EXT[3] is “0”.

The selector 232 receives the data S1 latched in the latch
section 214 and data stored in the register V (hereinafter
called “data v”), and receives data of the second bit in the
extended instruction code EXT (hereinafter called “data EXT
[2]) as a select control signal. The selector 232 selects and
outputs one of the two input data according to the select
control signal or the value of the data EXT[3]. Specifically,
the selector 232 selectively outputs the data v when the value
of the data EX'T[2] is “1”, and selectively outputs the data S1
when the value of the data EXT[2] is “0”.

The address counter 240 is a 4-bit up counter in which the
output data of the selector 232 is set as an initial value. The
address counter 240 counts up in synchronism with an inter-
nal clock, and outputs a present count value.

The selector 233 receives the output data of the selector
231 and the output data of the address counter 240 (count
value), and receives data of the first bit in the extended
instruction code EXT (hereinafter called “data EXT[1]) as a
select control signal. The selector 233 selects and outputs one
of the two input data according to the value of the data
EXTI1]. Specifically, the selector 233 selectively outputs the
output data of the selector 231 when the value of the data
EXTI[1] is “17, and selectively outputs the output data of the
address counter 240 when the value ofthe data EXT[2] is “0”.

The selector 234 receives the output data of the selector
232 and the output data of the address counter 240, and
receives the data EXT[1] as a select control signal. The selec-
tor 234 selects and outputs one of the two input data according
to the value of the data EXT[1]. Specifically, the selector 234
selectively outputs the output data of the selector 232 when
the value of thedata EX'T[1]1s “1”, and selectively outputs the
output data of the address counter 240 when the value of the
data EXT[2] is “0”.

The end decision circuit 250 has a match circuit 252 and an
OR gate 254.

The match circuit 252 receives output data of the selector
231 and output data of the address counter 240, and outputs a
match signal “1” when both input data match with each other,
and outputs an unmatch signal “0” when they do not match
with each other. The output signal of the match circuit 252 and
data EXT[1] are input to the OR gate 254, which in turn
outputs a signal of the logic sum of the two input signals.

US 7,716,267 B2

7

Therefore, the end decision circuit 250 outputs an instruc-
tion end signal “1” when the output data of the address
counter 240 matches with the output data of the selector 231
or when the value of the data EXT[1] is “1”, and outputs an
instruction continue signal “0” otherwise.

The register section 260, constituted by a RAM or the like,
is a data register which stores values of the individual digits of
BCD coded operation data in the order of addresses every
predetermined number of digits. The register section 260 is a
dual-port register having two ports for each of address desig-
nation and data output.

At the first port, 16-bit data stored at a 6-bit address Fad
with 2-bit data input from an address terminal Fuad as an
upper address and 4-bit data input from an address terminal
Flad as a lower address is output from an output terminal
Fout. Data Fu latched in the latch section 214 is input to an
address terminal Fuad, and output data of the selector 233 is
input to an address terminal Flad.

At the second port, 16-bit data stored at a 6-bit address Sad
with 2-bit data input from an address terminal Suad as an
upper address and 4-bit data input from an address terminal
Slad as a lower address is output from an output terminal
Sout. Data Su latched in the latch section 214 is input to an
address terminal Suad, and output data of the selector 234 is
input to an address terminal Slad.

16-bit data is input to the register section 260 from an input
terminal Fin, and is written at the address ad.

The computing unit 270 capable of performing a 16-bit
operation performs an operation according to an operation
control signal input from the instruction decoder 216 the
invention while the instruction end signal “1” is not output
from the end decision circuit 250 (i.e., while the instruction
continue signal “0” is output). In other words, the computing
unit 270 receives 16-bit data output from each of the output
terminals Fout and Sout of the register section 260, performs
an operation on the two input data, and outputs the operation
result as 16-bit data. The output data (operation result) of the
computing unit 270 is input to the input terminal Fin of the
register section 260 and written in the register section 260.

FIG. 4 is a diagram showing the detailed structure of the
register section 260. Referring to the diagram, the register
section 260 has four registers X, Y, Z and A each has a
capacity of 16 words. One word consists of 16 bits and opera-
tion data is stored in a BCD coded form, so that one word is
equivalent to four digits in decimal notation. Each register
stores data of a floating-point type whose format has upper 14
words (second to fifteenth words) as an imaginary portion and
lower two words (0-th word to the first word) as an exponent
portion (including a sign).

The register section 260 is addressed by designating a
register with a 2-bit upper address and designating a word in
the register with a 4-bit lower address. That is, addressing of
the register section 260 is executed word by word, and one
word of data or 16-bit data is output. The values of the upper
addresses Fuad and Suad are associated with the registers as
shown in a data table in FIG. 5. The value of each of the lower
addresses Flad and Slad indicates a word.

Specifically, at the first port, the 2-bit upper address Fuad
[1:0] designates a register, the 4-bit lower address Flad[3:0]
designates a word in the register, and one word or 16-bit data
Fout[15:0] is output. At the second port, the 2-bit upper
address Suad[1:0] designates a register, the 4-bit lower
address Slad[3:0] designates a word in the register, and one
word or 16-bit data Sout[15:0] is output.

Further, one word or 16-bit data Fout[15:0] is input, and is
written in a word designated by the address Fad.

10

15

20

25

30

40

45

50

55

60

65

8

Instructions which are executed by the arithmetic system
SI are classified into two, (1) 1-word instruction and (2) a
serial word instruction (variable digit number operation
instruction), according to the number of operations of the
computing unit 270 with respect to one instruction.

In a 1-word instruction, only a single word is designated at
each port for one instruction and the computing unit 270
performs an operation only once. In a 1-word instruction,
therefore, operation data of one word designated by the
address Fad becomes an operand and operation data of one
word designated by the address Sad becomes an operator.

In a serial word instruction, a plurality of consecutive
words are designated in order at each port for one instruction
and the computing unit 270 performs operations on the indi-
vidual words in order. That is, the computing unit 270 repeat-
edly performs the same operation on operation data of each of
words designated in order. The lower addresses Flad and Slad
designate words from the designated start word to the desig-
nated end word in order. With n being the start word and m
being the end word, a total of (m-n+1) words from the n-th
word to the m-th word are designated in order for each register
designated by the upper address Fuad, Suad, operations are
executed accordingly, and operation results are written in the
n-th word to the m-th word in the register designated by the
upper address Fuad. That is, a numerical operation is
executed in (4x(m-n+1)) digits.

In a serial word instruction, therefore, each operation data
of consecutive words from the n-th word to the m-th word,
designated by the address Fuad, becomes an operand and
each operation data of consecutive words from the n-th word
to the m-th word, designated by the address Suad becomes an
operator.

A start word and an end word are designated by data
included in the operand pertion 20 of an instruction or data
stored in the variable parameter memory section 220. Spe-
cifically, the start word is designated by data v in case of
indirect addressing and is designated by data S1 in case of
direct addressing. The end word is designated by data w in
case of indirect addressing and is designated by data F1 in
case of direct addressing.

FIG. 6 is a diagram showing an example of designating a
start word and an end word in a serial word instruction. FIG.
6 shows a case where an end word is fixed to “15” and a start
word is variable. When the start word is changed from the
second word or the lowest word in the imaginary portion to
the fifteenth word or the topmost word, as shown in the
diagram. the number of operation digits changes to 56, 52,
48, . .., and 4. word by word, i.e., by four digits. In other
words, in a serial word instruction, a numerical operation in
the desired number of operation digits can be achieved by
adequately setting the start word and the end word.

Whether a serial word instruction or a 1-word instruction
and whether indirect addressing or direct addressing are des-
ignated by the extended instruction code EXT included in the
instruction.

As shown in FIG. 7, the extended instruction code EXT
consists of 3 bits, the first bit, the second bit and the third bit
from the right-hand side in the diagram. The first bit (EXT[1])
indicates a serial word/1-word instruction; ““1”is set in the bit
for a 1-word instruction and “0” is set in the bit for a serial
word instruction.

The second bit (EXT[2]) indicates indirect/direct address-
ing of the start word; “1” is set in the bit in case of indirect
addressing and “0” is set in the bit in case of direct addressing.
In case of a 1-word instruction, however, a single operation is
performed on operation data of one word, so that data of the
start word directly becomes an operand.

US 7,716,267 B2

9

The third bit (EXT[3]) indicates indirect/direct addressing
of the end word; “1” is set in the bit in case of indirect
addressing and “0” is set in the bit in case of direct addressing.
In case of'a 1-word instruction, however, a single operation is
performed on operation data of one word, so that data of the
end word directly becomes an operator.

FIG. 8 is a diagram showing functional examples of
instructions for possible values the extended instruction code
EXT can take. In the diagram, an OP code “ADD” in the
instruction portion is an instruction code representing “addi-
tion”, 3-bit data following “ADD” represents an extended
instruction code EXT. “*” in the operand portion represents
“designation not required (arbitrary word)”. A mnemonic
“w” in operation represents data w stored in the register W,
and “v” represents data v stored in the register V.

The values of the individual bits of the extended instruction
code EXT have a total of eight patterns (A) to (H). Specific
operational examples of the arithmetic unit 200 for the
respective patterns (A) to (H) will be discussed one by one.

(A) Extended Instruction Code EXT=[000]

In this case, an instruction is a serial word instruction
which is executed by the direct addressing system. When an
instruction “ADD 000 X15Y4” is executed, for example, the
arithmetic unit 200 operates as follows. First, the latch section
214 latches Fu =00 (X)”, F1="1111 (15)”, Su="01 (Y)”,
S1="0100 (4)”, OP="ADD”, and EXT="000". The selector
231 receives EXT[3]="0" as the select control signal and
selects and outputs F1=“1111". The selector 232 receives
EXT[2]=“0" as the select control signal and selects and out-
puts S1=0100". Next, the output data of the selector 232 or
S1="0100" is set in the address counter 240. Then, the selec-
tors 233 and 234 both receive EXT[1]="0" as the select
control signal, and selects and outputs the output data of the
address counter 240 or S1="0100. Therefore, Fu="00" is
input to the address terminal Fuad of the register section 260,
the output data selector 233 or “0100” is input to the address
terminal Flad, and operation data stored in the fourth word in
the register X is output from the output terminal Fout.
Su="01"1s input to the address terminal Suad, the output data
selector 233 or “0100” is input to the address terminal Slad,
and operation data stored in the fourth word in the register Y
is output from the output terminal Sout. An operation control
signal instructing addition is output from the instruction
decoder 216, and two pieces of operation data output from the
register section 260 are added together in the computing unit
270. The addition result is input to the input terminal Fin of
the register section 260, and is written in the fourth word in
the register X (operation: X4+Y4—X4). In the end decision
circuit 250, the match circuit 252 outputs an unmatch signal
<0 for the output data of the selector 231 (Su="1111") does
not match with the output data of the address counter 240
(81=01007), and outputs an instruction continue signal “0”
for EXT[1]=“0". Then, the address counter 240 counts up,
and the selectors 233 and 234 both output “0101 (5)”. Accord-
ingly, “0101” is input to the address terminals Flad and Slad
of the register section 260, operation data stored in the fifth
word in the register X is output from the output terminal Fout,
and operation data stored in the fifth word in the registerY is
output from the output terminal Sout. Then, those two pieces
of output data are added together by the computing unit 270,
and the addition result is written in the fifth word in the
register X (operation: X5+Y5—X5). Meanwhile, the instruc-
tion continue signal “0” is output from the end decision circuit
250. Thereafter, every time the computing unit 270 performs
addition, the address counter 240 counts up, and “0110 (6)”,
“0111(7)”,...areinputto the address terminals Flad and Slad

10

15

20

25

30

35

40

45

50

55

60

65

10

in order. That is, operation data stored in the sixth word in the
register X, operation data stored in the seventh word, and so
forth are output from the output terminal Fout in order, and
operation data stored in the sixth word in the register Y,
operation data stored in the seventh word, and so forth are
output from the output terminal Sout in order. Those pieces of
operation data are added together in the computing unit 270 in
the output order, and the addition results are written in the
sixth word, the seventh word, and so forth in the register X in
order. When the output data (count value) of the address
counter 240 becomes “1111”, the match circuit 252 outputs
the match signal “1” and the end decision circuit 250 outputs
the instruction end signal “1”. Then, the computing unit 270
terminates an operation and terminates execution of the
instruction.

As apparent from the above, in the instruction “ADD 000
X15Y4”, twelve consecutive words from the fourth word to
the fifteenth word are consecutively added for the registers X
and Y, and the operation results are written in the fourth word
to the fifteenth word in the register X in order (operation:
X4~15+Y4~15—+X4~15). That is, a numerical operation in
48 (=4x12 words) digits in decimal notation is executed.

(B) Extended Instruction Code EXT=[010]

In this case, an instruction is a serial word instruction
which is executed by the indirect addressing system. When an
instruction “ADD 010 X15Y*” is executed, for example, the
arithmetic unit 200 operates as follows. First, the latch section
214 latches Fu =007, F1=¢1111", Su="01", S1=%*”,
OP=“ADD”, and EXT="010". The selector 231 receives “0”
as the select control signal and selects and outputs
F1="1111". The selector 232 receives “1” as the select con-
trol signal and selects and outputs data v, which is in turn set
in the address counter 240. Then, the selectors 233 and 234
both receive “0” as the select control signal, and select and
output the data v. Therefore, “00” is input to the address
terminal Fuad ofthe register section 260, the data v is input to
the address terminal Flad, and operation data stored in the
v-th word in the register X is output from the output terminal
Fout. “01” is input to the address terminal Suad, the data v is
input to the address terminal Slad, and operation data stored
in the v-th word in the register Y is output from the output
terminal Sout. The two pieces of operation data output from
the register section 260 are added together in the computing
unit 270, and the addition result is written in the v-th word in
the register X (operation: Xv+Yv—Xv). Thereafter, while the
instruction end signal “1” is not output from the end decision
circuit 250, the address counter 240 counts up every operation
performed by the computing unit 270, and operation data
stored in the (v+1)-th word in the register X, operation data
stored in the (v+2)-th word, and so forth are output from the
output terminal Fout in order, and operation data stored in the
(v+1)-th word in the register Y, operation data stored in the
(v+2)-th word, and so forth are output from the output termi-
nal Sout in order. Those pieces of operation data are added
together in the computing unit 270 in the output order, and the
addition results are written in the (v+1)-th word, the (v+2)-th
word, and so forth in the register X in order. When the output
data of the address counter 240 becomes “1111”, the match
circuit 252 outputs the match signal “1”” and the end decision
circuit 250 outputs the instruction end signal “1” after which
execution of the instruction is terminated.

As apparent from the above, in the instruction “ADD 010
X15Y* >, the fourth word to the fifteenth word are consecu-
tively added for the registers X and Y, and the operation
results are written in the v-th word to the fifteenth word in the
register X in order (operation: Xv~15+Yv~15—X Xv~15).

US 7,716,267 B2

11

Inthis case, the start word is designated by the data v. Because
the value of the data v is changeable, as a value according to
the desired number of operation digits is stored, the arithmetic
unit 200 can be allowed to perform a numerical operation in
an arbitrary number of operation digits as has been discussed
above referring to FIG. 6.

(C) Extended Instruction Code EXT=[100]

In this case, an instruction is a serial word instruction
which is executed by the indirect addressing system. When an
instruction “ADD 100 X* Y4” is executed, for example, the
arithmetic unit 200 operates as follows. First, the latch section
214 latches Fu =“00", F1="*", Su=“01”, S1=901007,
OP="ADD”, and EXT="100". The selector 231 receives “1”
as the select control signal and selects and outputs data w. The
selector 232 receives “0” as the select control signal and
selects and outputs S1=0100", which is in turn set in the
address counter 240. Then, the selectors 233 and 234 both
receive “0” as the select control signal, and select and output
“0100”. Therefore, “00” is input to the address terminal Fuad
of the register section 260, “0100” is input to the address
terminal Flad, and operation data stored in the fourth word in
the register X is output from the output terminal Fout. “01” is
input to the address terminal Suad, “0100” is input to the
address terminal Slad, and operation data-stored in the fourth
word in the register Y is output from the output terminal Sout.
The two pieces of operation data output from the register
section 260 are added together in the computing unit 270, and
the addition result is written in the fourth word in the register
X (operation: X4+Y4—X4). Thereafter, while the instruction
end signal “1” is not output from the end decision circuit 250,
the computing unit 270 repeatedly executes an operation (ad-
dition) on operation data output from the register section 260
and the address counter 240 counts up every operation per-
formed by the computing unit 270. When the output data of
the address counter 240 matches with the data w, the end
decision circuit 250 outputs the instruction end signal “1”
after which execution of the instruction is terminated.

As apparent from the above, in the instruction “ADD 100
X*Y4”, the fourth word to the w-th word are consecutively
added for the registers X and Y, and the operation results are
written in the fourth word to the w-th word in the register X in
order (operation: X4~w +Y4~w—X4~w). In this case, the
end word is designated by the data w. Because the value of the
data w is changeable, as a value according to the desired
number of operation digits is stored, the arithmetic unit 200
can be allowed to perform a numerical operation in an arbi-
trary number of operation digits.

(D) Extended Instruction Code EXT=[110]

In this case, an instruction is a serial word instruction
which is executed by the indirect addressing system. When an
instruction “ADD 110 X* Y4” is executed, for example, the
arithmetic unit 200 operates as follows. First, the latch section
214 latches Fu =007, F1="*7, Su="01", S1="%7,
OP=*ADD?”, and EXT=*110". The selector 231 receives “1”
as the select control signal and selects and outputs data w. The
selector 232 receives “1” as the select control signal and
selects and outputs data v, which is in turn set in the address
counter 240. Then, the selectors 233 and 234 both receive “0”
as the select control signal, and select and output the data v.
Therefore, “00” is input to the address terminal Fuad of the
register section 260, the data v is input to the address terminal
Flad, and operation data stored in the v-th word in the register
X is output from the output terminal Fout. “01” is input to the
address terminal Suad, the data v is input to the address
terminal Slad, and operation data stored in the v-th word in the
register Y is output from the output terminal Sout. The two

10

15

20

25

30

35

40

45

50

55

60

65

12

pleces of operation data output from the register section 260
are added together in the computing unit 270, and the addition
result is written in the v-th word in the register X (operation:
Xv+Yv—=Xv). Thereafter, while the instruction end signal
“1” is not output from the end decision circuit 250, the com-
puting unit 270 repeatedly executes an operation (addition)
on operation data output from the register section 260 and the
address counter 240 counts up every operation performed by
the computing unit 270. When the output data of the address
counter 240 matches with the data w, the end decision circuit
250 outputs the instruction end signal “1”” after which execu-
tion of the instruction is terminated.

As apparent from the above, in the instruction “ADD 110
X* Y*”, the v-th word to the w-th word are consecutively
added for the registers X and Y, and the operation results are
written in the v-th word to the w-th word in the register X in
order (operation: Xv~w+Yv~w—=Xv~w). In this case, the
start word is designated by the data v and the end word is
designated by the data w. Because the values of the data vand
w are changeable, as values according to the desired number
of operation digits are stored, the arithmetic unit 200 can be
allowed to perform a numerical operation in an arbitrary
number of operation digits.

(E) Extended Instruction Code EXT=[001]

An instruction is a 1-word instruction which is executed by
the direct addressing system. When an instruction “ADD 001
X* Y47 is executed, for example, the arithmetic unit 200
operates as follows. First, the latch section 214 latches
Fu=-007, F1="*" 8§=“01", and the selector 231 receives “0”
as the select control signal and selects and outputs “1111”.
The selector 232 receives “0” as the select control signal and
selects and outputs “0100”, and S1=“0100" is set in the
address counter 240. Then, the selector 233 receives “1” as
the select control signal, and selects and outputs the output
data of the selector 231 or F1=“1111". The selector 234
receives “1” as the select control signal, and selects and
outputs the output data of the selector 232 or F1="0100".
Therefore, “00” is input to the address terminal Fuad of the
register section 260, “1111” is input to the address terminal
Flad, and operation data stored in the fifteenth word in the
register X is output from the output terminal Fout. “01” is
input to the address terminal Suad, “0100” is input to the
address terminal Slad, and operation data stored in the fourth
word in the register Y is output from the output terminal Sout.
The two pieces of operation data output from the register
section 260 are added together in the computing unit 270, and
the addition result is written in the fifteenth word in the
register X (operation: X15+Y4—X15). Meanwhile, in the
end decision circuit 250, the match circuit 252 outputs the
unmatch signal “0” for the output data of the selector 231
(S1°1111”) does not match with the output data of the address
counter 240 (“0100), but the end decision circuit 250 outputs
the instruction end signal “1” for EXT[1]="1", so that execu-
tion of the instruction is terminated.

As apparent from the above, in the instruction “ADD 001
X15Y4”, the value of the fifteenth word in the register X and
the value ofthe fourth word in the register Y are added, and the
addition result is written in the fifteenth word in the register X
(operation: X15+Y4—X15).

(F) Extended Instruction Code EXT=[011]

An instruction is a 1-word instruction which is executed by
the indirect addressing system. In case of executing the
instruction “ADD 011 X15Y*”, for example, the value of the
fifteenth word in the register X and the value of the v-th word
in the register Y are added, and the addition result is written in

US 7,716,267 B2

13

the fifteenth word in the register X (operation: X15+
Yv—X15). In this case, the number of operations is desig-
nated by the data v.

(G) Extended Instruction Code EXT=[101]

Aninstruction is a 1-word instruction which is executed by
the indirect addressing system. In case of executing the
instruction “ADD 101 X* Y*”, for example, the value of the
w-th word in the register X and the value of the fourth word in
the register Y are added, and the addition result is written in
the w-th word in the register X (operation: Xw+Y4—Xw). In
this case, the number of operands is designated by the data w.

(H) Extended Instruction Code EXT=[111]

Aninstruction is a 1-word instruction which is executed by
the indirect addressing system. In case of executing the
instruction “ADD 111 X* Y*”, for example, the value of the
w-th word in the register X and the value of the v-th word in
the register Y are added, and the addition result is written in
the w-th word in the register X (operation: Xw+Yv—=Xw).In
this case, the number of operands is designated by the data w
and the number of operations is designated by the data v.

Effects of First Embodiment

According to the arithmetic unit 200 of the first embodi-
ment, as the start word and the end word are designated by a
single instruction, an operation on a plurality of consecutive
words from the designated start word to the designated end
word is performed by the computing unit 270. This can ensure
execution of operations in the desired number of operation
digits.

The start word and the end word can be designated directly
in an instruction, or designated indirectly by the data w and v
stored in the registers W and V in the variable parameter
memory section 220. As the number of operation digits (num-
ber of effective digits) can be designated freely instruction by
instruction, therefore, it is possible to change or designate the
number of operation digits while the program is running.
With the use of a program which stores the operation result in
the register W, V, the number of operation digits can be
changed during execution of the program. This can ensure a
flexible program with respect to the number of operation
digits, so that high-precision operations can be accomplished
easily.

Further, as BCD coded data values are stored in the register
section 260, an error originating from binary-decimal conver-
sion in the prior art does not occur in the invention.

Modifications of First Embodiment

The application of the invention is not limited to the first
embodiment, but can be adequately changed without depart-
ing from the scope and spirit of the invention.

(1) Variable Unit of Digits

Although the number of digits is changed by four digits in
decimal notation with one word (16 bits) being a unit in the
embodiment, other numbers of bits, specifically, 4xn bits (n
being a natural number) may be selected as a unit. When the
computing unit 270 performs an operation in 32 bits, for
example, the unit may be two words. The reason for setting
the multiple of 4xn is that BCD coded data is stored in the
register section 260 and four bits in a BCD code are equiva-
lent to one digit in decimal notation. In this case, an arithmetic
unit capable of changing the number of digits by n digits in
decimal notation can be realized. In the embodiment, digit-
by-digit designation of the number of operation digits may be

10

15

20

25

30

35

40

45

50

55

60

65

14

designated digit by digit by masking the values of unneces-
sary digits of the operation result.

(2) Making the Number of Operation Digits in Exponent
Portion Variable

Although any one of the second to fifteenth words is taken
as a start word or an end word and the number of operation
digits in the imaginary portion is set variable in the embodi-
ment, the number of operation digits in the exponent portion
may be made variable.

(3) The Number of Words in a Register

Although the number of words in the register section 260
has been illustrated as “16”, the number is in no way restric-
tive. Although the size of the imaginary portion is set to 14
words and the size of the exponent portion is set to 2 words,
the word ratio may be changed as needed.

Second Embodiment

A second embodiment will be described below.

An arithmetic system S2 according to the second embodi-
ment is designed in such a way that the PC 100 and an
arithmetic unit 300 are connected together by a communica-
tion cable K2 like a USB cable so as to be able to exchange
data with each other. As the structure of the arithmetic system
S2 is approximately identical to that of the arithmetic system
S1 of'the first embodiment, same reference symbols are given
to those components which are identical to the corresponding
components of the first embodiment to avoid their otherwise
redundant detailed descriptions. The detailed description
given below is centered on the unique portions of the second
embodiment.

The arithmetic unit 300 has a register I, which can store
6-bit data, in a variable parameter memory section 320 as a
characteristic structure of the second embodiment, so that the
address of a register can be designated digit by digit at the
time of designating the address by the indirect addressing
system. This can provide an arithmetic unit capable of freely
changing, digit by digit, the number of calculation digits
(number of effective digits) and the calculation start digit
which are used in operations.

FIG. 9 is a block diagram showing the circuit structure of
the arithmetic unit 300, and shows the essential portions that
are associated with execution of numerical operations. Refer-
ring to FIG. 3, the arithmetic unit 300 comprises a program
ROM 310, a program counter 312, a latch section 314, an
instruction decoder 316, a variable parameter memory sec-
tion 320, selectors 331, 332, 333 and 334, an address counter
340, a register section 360, a computing unit 370, and an end
decision circuit 350.

The program ROM 310 whose structure is similar to that of
the program ROM 210 stores program instructions 311 or
machine programs transferred from the PC 100, reads the
program instructions 311 at addresses indicated by the pro-
gram counter 312 one after another, and are output to the latch
section 314. The program instruction 311 is comprised of one
or more calculation instructions in each of which the type of
calculation and the number of calculation digits are set. The
latch section 314, like the latch section 214, holds a single
instruction read from the program ROM 310. A single instruc-
tion comprises an instruction portion 40 and an operand por-
tion 30. As a characteristic structure of the second embodi-
ment, the instruction portion 40 has an instruction code OP
and a 3-bit extended instruction code EXT.

FIG. 10 exemplifies the data structure of the extended
instruction code EXT. As shown in the diagram, the extended
instruction code EXT consists of 4 bits, and corresponding

US 7,716,267 B2

15
pieces of data are stored in the first bit, the second bit, the third
bit and the fourth bit from the right-hand side in the diagram.
Specifically, data indicating a 1-word/serial word instruction
is stored in the first bit (EXT[1]); “1” is set in the bit for a
1-word instruction and “0” is set in the bit for a serial word
instruction.

Data indicating indirect addressing (designated by the reg-
ister V), indirect addressing (designated by the register 1) or
direct addressing of the start word is stored in the second and
third bits (EXT[2] and EXT[3]). Specifically, “01” is setin the
bits for indirect addressing designated by the register V, “10”
is set in the bits for indirect addressing designated by the
register [, and “00” is set in the bits for direct addressing.

Data indicating indirect/direct addressing of the end word
is stored in the fourth bit (EXT[4]); “1” is set in the bit for
indirect addressing, and “0” is set in the bit for direct address-
ing.

The variable parameter memory section 320, constituted
by a RAM or the like, has registers W and V each capable of
storing 4-bit data and a register I capable of storing 6-bit data.
The register W designates the calculation end digit by a word
unit or by the unit of four digits in case of indirect addressing,
and designates an arbitrary one of fifteen words constituting
the register with four bits. The register V designates the cal-
culation start digit by a word unit or by the unit of four digits
in case of indirect addressing, and designates an arbitrary one
of fifteen words constituting the register with four bits. The
register 1 designates the calculation start digit by the unit of
one digit in case of indirect addressing, and the upper four bits
designate an arbitrary one of fifteen words constituting the
register with four bits while the lower two bits designate an
arbitrary digit in the designated word.

The selector 331 receives the data F1 latched in the latch
section 314 and data w stored in the register W, and receives
data of the fourth bit in the extended instruction code EXT as
a select control signal. The selector 331 selects and outputs
one of the two input data according to the select control signal
or the value of the data EXT[4]. Specifically, the selector 331
selectively outputs the data w when the value of the data
EXT[4] is “1”, and selectively outputs the data F1 when the
value of the data EXT[4] is “0”.

The selector 332 receives the data S1 latched in the latch
section 314, data v stored in the register V and data stored in
the register I (hereinafter called “data i””). The selector 332
also receives the data EXT[2] and the data EXT[3] as a select
control signal.

The selector 332 selects and outputs one of the two input
data according to the values of the data EXT[2] and data
EXT]3]. Specifically, the selector 332 selectively outputs the
data v when the values of the data EXT[2] and data EXT][3]
are “01”, and selectively outputs the data SI when the values
are “00”.

The address counter 340 is an up counter similar to the
address counter 240 of the first embodiment, counts up and
outputs a present count value every time an operation is
performed.

The register section 360 whose structure is similar to that of
the register section 260 is a dual-port register having two ports
for each of address designation and data output. At the first
port, 16-bit data stored at a 6-bit address Fad with 2-bit data
input from an address terminal Fuad as an upper address and
4-bit data input from an address terminal Flad as a lower
address is output from an output terminal Fout. Data Fu
latched in the latch section 314 is input to an address terminal
Fuad, and output data of'the selector 333 is input to an address
terminal Flad.

10

15

25

30

35

45

50

55

60

65

16

At the second port, 16-bit data stored at a 6-bit or 8-bit
address Sad with 2-bit data input from an address terminal
Suad as an upper address and 4-bit data or 6-bit data input
from an address terminal Slad as a lower address is output
from an output terminal Sout. Data Su latched in the latch
section 314 is input to an address terminal Suad, and output
data of the selector 334 is input to an address terminal Slad.

The register section 360 is addressed by designating a
register with a 2-bit upper address and designating a word in
the register with a 4-bit lower address or designating a word
and a digit in the register with a 6-bit lower address. As
address designation of the register section 360 is done by a
word unit or a digit unit, one word of data or 16-bit data is
output with the designated word or digit being the calculation
start word or the calculation start digit.

Referring to FIG. 11, a description will be given of how
data is output from the register section 360 when address
designation of a register Rn is done by a digit unit. As illus-
trated in the diagram, the register Rn comprises an imaginary
portion consisting of upper 56 digits (fourteen words) and an
exponent portion consisting of lower 8 digits (two words),
with the most significant digit of the fifteenth word or the end
digit being a blank digit. Therefore, the maximum number of
calculation digits of the imaginary portion is “55”. It is
assumed that the calculation start digit is set by the unit of
digits, and the calculation end digit is set by the word unit
(i-e., the unit of digits). Further, the register Rn outputs data
with one word or four digits being the unit of digits. The data
output method will be, specifically discussed below.

‘When the number of calculation digits is designated to 55,
as shown in the second stage in FIG. 11, the calculation start
digit is set to the eighth digit, the least significant digit in the
imaginary portion, and the calculation end digit to the fif-
teenth word. The register section 360 sequentially outputs
data for four digits or one word (16 bits) from the eighth digit
set to the calculation start digit with four digits being the unit
of digits, and outputs data for three digits (12 bits) in the end
word to the computing unit 370 after outputting data for
thirteen words. Accordingly, the number of calculation digits
to be processed in the computing unit 370 becomes 55 digits.

‘When the number of calculation digits is designated to 54,
as shown in the third stage in the diagram, the calculation start
digit is designated to the ninth digit, and the calculation end
digit to the fifteenth word. The register section 360 outputs
data for four digits or one word (16 bits) from the ninth digit
set to the calculation start digit with four digits being the unit
of digits, and sequentially outputs data for two digits (8 bits)
in the end word to the computing unit 370 after sequentially
outputting data for thirteen words. Accordingly, the number
of calculation digits to be processed in the computing unit 370
becomes 54 digits.

‘When the number of calculation digits is designated to 1, as
shown in the lowest stage in the diagram, the calculation start
digit is setto the 62nd digit, and the calculation end digit to the
fifteenth word. The register section 360 outputs data for one
digit (4 bits) from the 62nd digit set to the calculation start
digit. In this case, the number of calculation digits to be
processed in the computing unit 370 becomes one digit.

‘When the number of calculation digits is designated by a
digit unit, as apparent from the above, data for one word or
four digits is sequentially output every predetermined unit of
digits from the calculation start digit set in the program
instruction 311, and data for the remaining number of digits is
output in the last word, thereby ensuring fast decimal calcu-
lation by the designated number of calculation digits.

The following will describe an example of the operation of
the arithmetic unit 300 when a specific instruction is given.

US 7,716,267 B2

17

FIG. 12 is a diagram showing functional examples of instruc-
tions for possible values the extended instruction code EXT
can take. In the diagram, an OP code “ADD” in the instruction
portion is an instruction code representing “addition”, 4-bit
data following “ADD” represents an extended instruction
code EXT. A mnemonic “w” in operation represents data w
stored in the register W, “v” represents data v stored in the
register V, and “i” represents data i stored in the register .

There are a total of twelve patterns (I) to (T) for functional
examples of an instruction from the values of the individual
bits of the extended instruction code EXT. From the correla-
tion between the EXT[2] and EXT[3] of the extended instruc-
tion code EXT in the second embodiment with the EXT[2] of
the extended instruction code EXT in the first embodiment,
the patterns (I) to (T) include those which are duplex patterns
of the patterns (A) to (H). The correlation of the duplex
patterns will be given to avoid repeating the detailed opera-
tional descriptions. Each pair of the patterns (A) and (), the
patterns (B) and (J), the patterns (C) and (L), the patterns (D)
and (M), the patterns (E) and (O), the patterns (F) and (P), the
patterns (G) and (R), and the patterns (H) and (S) is a syn-
onymous functional example. The following will describe the
characteristic patterns (K), (N), (Q) and (T) of the second
embodiment.

(K) Extended Instruction Code EXT=[0100]

In this case, an instruction is a serial word instruction
which is executed by the indirect addressing system. When an
instruction “ADD 0100 X15Y*” is executed, for example, the
arithmetic unit 300 operates as follows. First, the latch section
314 latches Fu =00 (X)”, F1="1111 (15)”, Su="“01 (Y)”,
S1=*”_OP=“ADD”, and EXT=*0100". That is, the program
instruction 311 or a calculation instruction in which the num-
ber of calculation digits and the type of calculation are set is
read from the program ROM 310 which is the calculation-
instruction memory section. The selector 331 receives EXT
[4]=40" as the select control signal and selects and outputs
F1="1111". The selector 332 receives EXT[2]="0" and EXT
[3]="1" as the select control signal and selects and outputs
data i, which is in turn set in the address counter 340. Then,
the selectors 333 and 334 both receive EXT[1]=“0" as the
select control signal. Therefore, Fu="00" is input to the
address terminal Fuad of the register section 360, the data i is
input to the address terminal Flad, and operation data for one
word stored in the i-th to (i+3)-th digits in the register X is
output from the output terminal Fout. “01” is input to the
address terminal Suad, the data i is input to the address ter-
minal Slad, and operation data for one word stored in the i-th
to (i+3)-th digits in the register Y is output from the output
terminal Sout as an operand. The two pieces of operation data
output from the register section 360 are added together in the
computing unit 370, and the addition result is written in the
i-th to (i+3)-th digits in the register X (operation: Xi~(i+3)+
Yi~(i+3)—Xi~(i+3)). Thereafter, while the instruction end
signal “1” is not output from the end decision circuit 350, the
address counter 340 counts up by one every operation per-
formed by the computing unit 370, and operation data stored
in the i-th to (i+3)-th digits in the register X, operation data
stored in the (1+4)-th to (v+7)-th digits, and so forth are output
from the output terminal Fout of the register section 360 in
order, and operation data stored in the i-th to (i+3)-th digits in
the register Y, operation data stored in the (i+4)-th to (i+7)-th
digits, and so forth are output from the output terminal Sout in
order. Those pieces of operation data are added togetherin the
computing unit 370 in the output order, and the addition
results are written in the i-th to (i+3)-th digits, the (i+4)-th to
(1+7)-th digits, and so forth in the register X in order. When

10

15

20

25

30

35

40

45

50

55

60

65

18

the output data of the address counter 340 becomes “1111”,
the match circuit 352 outputs the match signal ““1”” and the end
decision circuit 350 outputs the instruction end signal “1”
after which execution of the instruction is terminated.

As apparent from the above, in the instruction “ADD 0100
X15Y*”, the i-th word to the fifteenth word are consecutively
added for the registers X and Y, and the operation results are
written in the i-th to the fifteenth words in the register X in
order (operation: Xi~15+Yi~15—=Xi~15). This operation
achieves the function of calculating the value for the corre-
sponding unit of digits stored in each of the registers X and Y
as the multidigit memory section in order every unit of digits
(e.g., “unit of four digits™) in the number of calculation digits
(e.g., “i-th to fifteenth word) set in the program instruction
311 or a calculation instruction stored in the program ROM
310 as the calculation-instruction memory section, in decimal
notation according to the type of calculation (e.g., “ADD”) set
in the program instruction 311, and sequentially writing the
operation result in the registers X and Y as the multidigit
memory section every unit of digits. In this case, the calcula-
tion start digit is designated by the data i. Because the value of
the data i is changeable, as a value according to the desired
number of calculation digits is stored, the arithmetic unit 300
can be allowed to perform a numerical operation in an arbi-
trary number of calculation digits as has been discussed above
referring to FIG. 11.

(N) Extended Instruction Code EXT=[1100]

In this case, an instruction is a serial word instruction
which is executed by the indirect addressing system. When an
instruction “ADD 1100 X*Y4” is executed, for example, the
arithmetic unit 300 operates as follows. First, the latch section
314 latches Fu =007, F1=<*”, Su=“01", S1="*”,
OP="ADD”, and EXT=“1100". That is, the program instruc-
tion 311 or a calculation instruction in which the number of
calculation digits and the type of calculation are set is read
from the program ROM 310 which is the calculation-instruc-
tion memory section. The selector 331 receives “1” as the
select control signal and selects and outputs data w. The
selector 332 receives “10” as the select control signal and
selects and outputs data i, which is in turn set in the address
counter 340. Then, the selectors 333 and 334 both receive “0”
as the select control signal, and select and output the data i.
Therefore, “00” is input to the address terminal Fuad of the
register section 360, the data i is input to the address terminal
Flad, and operation data stored in the i-th to (i+3)-th digits in
the register X is output from the output terminal Fout. “01” is
input to the address terminal Suad, the data i is input to the
address terminal Slad, and operation data stored in the i-th to
(i43)-th digits in the register Y is output from the output
terminal Sout. The two pieces of operation data output from
the register section 360 are added together in the computing
unit 370, and the addition result is written in the fourth word
in the register X (operation: Xi~(i+3)+Yi~(i+3)—=Xi~(i+3)).
Thereafter, while the instruction end signal “1”” is not output
from the end decision circuit 350, the computing unit 370
repeatedly executes an operation (addition) on operation data
output from the register section 360 and the address counter
340 counts up by one every operation performed by the com-
puting unit 370. When the upper four bits of the output data of
the address counter 340 match with the data w, the end deci-
sion circuit 350 outputs the instruction end signal “1” after
which execution of the instruction is terminated.

As apparent from the above, in the instruction “ADD 1100
X*Y*” thei-th to w-th words are consecutively added for the
registers X and Y, and the operation results are written in the
i-th to w-th words in the register X in order (operation: Xi~w+

US 7,716,267 B2

19

Yi~w—Xi~w). This operation achieves the function of cal-
culating the value for the corresponding unit of digits stored
in each of the registers X and Y as the multidigit memory
section in order every unit of digits (e.g., “unit of four digits™)
in the number of calculation digits (e.g., “i-th to w-th words)
set in the program instruction 311 or a calculation instruction
stored in the program ROM 310 as the calculation-instruction
memory section, in decimal notation according to the type of
calculation (e.g., “ADD”) set in the program instruction 311,
and sequentially writing the operation result in the registers X
andY as the multidigit memory section every unit of digits. In
this case, the calculation start digit is designated by the data i
and the calculation end digit is designated by the data w.
Because the values of the data 1 and w are changeable, as a
value according to the desired number of calculation digits is
stored, the arithmetic unit 300 can be allowed to perform a
numerical operation in an arbitrary number of calculation
digits.

(Q) Extended Instruction Code EXT=[0101]

In this case, an instruction is a 1-word instruction which is
executed by the indirect addressing system. In case of execut-
ing the instruction “ADD 011 X15 Y*”, for example, the
values of the individual digits of the fifteenth word in the
register X and the values of the i-th to (i+3)-th digits in the
register Y are added, and the addition result is written in the
fifteenth word in the register X (operation: X15+Yi~
(1+3)—X15).

This operation achieves the function of calculating the
value for the corresponding unit of digits stored in each of the
registers X and Y as the multidigit memory section in order
every unit of digits (e.g., “unit of four digits™) in the number
of calculation digits (e.g., “four digits”) set in the program
instruction 311 or a calculation instruction stored in the pro-
gram ROM 310 as the calculation-instruction memory sec-
tion, in decimal notation according to the type of calculation
(e.g., “ADD”) set in the program instruction 311, and sequen-
tially writing the operation result in the registers X and Y as
the multidigit memory section every unit of digits. In this
case, the calculation start digit is designated by the data i.
Because the value of the data i is changeable, as a value
according to the desired calculation start digit is stored, the
arithmetic unit 300 can be allowed to perform a numerical
operation with an arbitrary value as the number of operations.

(T) Extended Instruction Code EXT=[1101]

In this case, an instruction is a 1-word instruction which is
executed by the indirect addressing system. In case of execut-
ing the instruction “ADD 111 X* Y*”_ for example, the value
of the w-th word in the register X and the values of the i-th to
(143)-th digits in the register Y are added, and the addition
result is written in the w-th word in the register X (operation:
Xw+Yi~(1+3)—=Xw).

This operation achieves the function of calculating the
value for the corresponding unit of digits stored in each of the
registers X and Y as the multidigit memory section in order
every unit of digits (e.g., “unit of four digits™) in the number
of calculation digits (e.g., “four digits”) set in the program
instruction 311 or a calculation instruction stored in the pro-
gram ROM 310 as the calculation-instruction memory sec-
tion, in decimal notation according to the type of calculation
(e.g., “ADD”) set in the program instruction 311, and sequen-
tially writing the operation result in the registers X and Y as
the multidigit memory section every unit of digits. In this
case, the calculation end digit is designated by the data w and
the calculation start digit is designated by the data i. Because
the values of the data i and w are changeable, as a value
according to the desired calculation end digit and calculation

10

15

20

25

30

35

40

45

50

55

60

65

20

start digit is stored, the arithmetic unit 300 can be allowed to
perform a numerical operation with an arbitrary value as an
operand.

Referring to a flowchart in FIG. 13, the following will
discuss an operational example which is performed when
values are set in the register 1 and the register W with the
pattern (N) taken as an example. The flowchart in FIG. 13
illustrates a digit designation calculation routine which is
executed by the arithmetic unit 300. Referring to the diagram,
first, an instruction designated by the program counter 312 is
read from a program area in the program ROM 310 (step
ST1). Then, the value i of the register I in the instruction is
read (step ST2), and data i is set in the register I (step ST3).
Then, the value w of the register W in the instruction is read
(step ST4), and data w is set in the register I (step ST5).

Next, it is discriminated whether or not w is the last word,
i.e., whether or not w=15 (step ST6). When w=15 (step ST6;
YES), the calculation end digit is computed by calculating
wx4+2 (step ST7). Then, operation data at the i-th to (i+3)-th
digits in the register X is read (step ST8), and operation data
at the i-th to (i+3)-th digits in the register Y is read (step ST9).
Then, the computing unit 370 performs calculation according
to the instruction, and the calculation result is stored at i-th to
(i+3)-th digits in the register X (step ST10).

Next, it is discriminated whether or not i+4 is smaller than
the calculation end digit (step ST11). When i+4 is smaller
than the calculation end digit (step ST11; YES), the end
decision circuit 350 outputs the instruction end signal “0”,
and i+4 is set in the value i of the register I (step ST12). Then,
the flow goes to step ST8 to repeat execution of the processes.
When i+4 is larger than the calculation end digit (step ST11;
NO), the end decision circuit 350 outputs the instruction end
signal “1”, after which the digit designation calculation rou-
tine is terminated.

‘When w is not the last word, i.e., w is not equal to 15 at step
ST6 (step ST6; NO), the calculation end digit is computed by
calculating wx4+3 (step ST13). Then, operation data at the
i-th to (i+3)-th digits in the register X is read (step ST14), and
operation data at the i-th to (i+3)-th digits in the register Y is
read (step ST15). Then, the computing unit 370 performs
calculation according to the instruction, and the calculation
result is stored at i-th to (i+3)-th digits in the register X (step
ST16).

Next, it is discriminated whether or not i+4 is smaller than
the calculation end digit or not (step ST17). When i+4 is
smaller than the calculation end digit (step ST17; YES), the
end decision circuit 350 outputs the instruction end signal
“0”, and i+4 is set in the value i of the register I (step ST18).
Then, the flow goes to step ST14 to repeat execution of the
processes. When 1+4 is larger than the calculation end digit
(step ST17; NO), it is discriminated whether i+3 is the calcu-
lation end digit or not (step ST19). When the calculation end
digitisi+3 (step ST19; YES), operation data of the calculation
result stored in the register X matches with the calculation end
digit, so that the end decision circuit 350 outputs the instruc-
tion end signal “1”, after which the digit designation calcu-
lation routine is terminated.

‘When the calculation end digit is not i+3 (step ST19; NO),
operation data of the calculation result stored in the register X
does not match with the calculation end digit, so data of
(i+1)-th to (i+3)-th digits in the i-th to (i+3)-th digits is
masked (step ST20). That is, as the register section 360 out-
puts operation data every word or every four digits from the
designated i-th digit, operation data of the end word includes
unnecessary data when the number of calculation digits is not
an integer multiple of 4. The calculation result of the desired
number of digits can be acquired by masking unnecessary

US 7,716,267 B2

21

data. With the unnecessary data in the register X masked (step
ST20), the end decision circuit 350 outputs the instruction
end signal “1”, after which the digit designation calculation
routine is terminated.

A description will now be given of the calculation method
to be executed by the arithmetic unit 300 when a specific type
of calculation, a specific number of calculations and a specific
number of calculation digits are set. To begin with, a case
where “square root” is set as the type of calculation, “3” is set
as the number of calculations, “56th digit (i=56)" is set as the
calculation start digit and “15th word (w=15)" is set as the
calculation end digit will be discussed below referring to
FIGS. 14 to 17.

Arithmetic expressions on the left-hand side in FIGS. 14 to
17 are given for explaining the method of calculating a square
root with figures written down on paper, and calculation pro-
cedures on the right-hand side in FIGS. 14 to 17 are given for
explaining the square root calculation method that is executed
by the arithmetic unit 300. It is assumed that in acquiring a
square root by calculation with figures written down on paper,
the values of individual digits are acquired based on the
following equation 1. As this method is well know, the
detailed description will not be given.

(a+b+e+d+ .. . P =a’+2ab+b>+2(a+b)c+c?+2(a+b+c)

dvd’+ (1)

As shown in the left-hand side in FI1G. 14, a figure (1) is
acquired from the equation 1 as a value “1” which, when
squared, does not exceed “3” when “3” is the number of
calculations. A figure (2) is acquired as the same value “1” as
the figure (1). A figure (3) is “1*” or the square root of the
figure (1), and the result of subtracting the square root from
the number of calculations “3” is acquired as a figure (4).
Further, a value “2” obtained by adding the figure (1) to the
figure (2) is acquired as a figure (5), after which the flow goes
to the next calculation.

The following will discuss a case where the calculation
with figures written down on paper is carried out by the
arithmetic unit 300. As shown in the right-hand side in FIG.
14, register X="3”, register Y="0", register Z="0", and reg-
ister A="0" are set at the beginning of an operation. Next,
“A+1—1” (corresponding to the figure (1)) is set in the reg-
ister A, “Y+1—1 (corresponding to the figure (2)) is set in
the registerY, and “Yx1—1" (corresponding to the figure (3))
is setin the register 7. Then, i (calculation start digit)=62 is set
in the register I, w (calculation end word)=15 is set in the
register W, and when the operation starts, an operation on the
output data of the register X and the output data of the register
7. is performed and the operation result is set as “3-1—2"
(corresponding to the figure (4)) in the register X. Further,
“Y+1—2" (corresponding to the figure (5)) is set in the reg-
ister Y.

Next, as shown in the left-hand side in FIG. 15, the maxi-
mum X at which (20+x) x x becomes equal to or smaller than
200 is acquired from the equation 1, and a figure (6) is
acquired as “1.7” from x=7. A figure (7) is acquired as “27”
from (20+x). A value “189” obtained by multiplying “27” by
“7”is acquired as a figure (8), the figure (8) is subtracted from
200, yielding a subtraction result “11” as a figure (9). Further,
a value “37” resulting from addition of ““7”” to the figure (7) is
acquired as a figure (10), after which the step goes to the next
calculation.

The following will discuss a case where the calculation
with figures written down on paper is carried out by the
arithmetic unit 300. As shown in the right-hand side in FIG.
15, “A+0.7—1.7” (corresponding to the figure (6)) is set in the
register A, “Y+0.7—2.7” (corresponding to the figure (7)) is

10

15

20

25

30

35

40

45

50

55

60

65

22

set in the register Y, and “Y x0.7—1.89” (corresponding to the
figure (8)) is set in the register Z. Then, i (calculation start
digit)=60 is set in the register I, w (calculation end word)=15
is set in the register W, and when the operation starts, an
operation on the output data of the register X and the output
data of the register Z is performed and the operation result is
set as “2.00-1.89—0.11—"" (corresponding to the figure (9))
in the register X. Further, “Y+0.7—3.4” (corresponding to
the figure (10)) is set in the register Y.

Next, as shown in the left-hand side in FIG. 16, the maxi-
mum x at which (340+x)xx becomes equal to or smaller than
1100 is acquired from the equation 1, and a figure (11) is
acquired as “1.73” from x=3. A figure (12) is acquired as
“343” from (340+x). A value “1029” obtained by multiplying
“343” by “3” is acquired as a figure (13), the figure (13) is
subtracted from 1100, yielding a subtraction result “71” as a
figure (14). Further, a value “346” resulting from addition of
“3” to the figure (12) is acquired as the figure (15), after which
the step goes to the next calculation.

The following will discuss a case where the calculation
with figures written down on paper is carried out by the
arithmetic unit 300. As shown in the right-hand side in FIG.
16, “A+0.03—1.73” (corresponding to the figure (11)) is set
in the register A, “Y+0.03—3.43” (corresponding to the fig-
ure (12)) is set in the register Y, and “Yx0.03—0.1029” (cor-
responding to the figure (13)) is set in the register Z. Then, i
(calculation start digit)=58 is set in the register I, w (calcula-
tion end word)=15 is set in the register W, and when the
operation starts, an operation on the output data of the register
X and the output data of the register Z is performed and the
operation result is set as “0.11-0.1029—0.0071" (corre-
sponding to the figure (14)) in the register X. Further,
“Y+0.03—3.46” (corresponding to the figure (15)) is set in
the register Y.

Next, as shown in the left-hand side in FIG. 17, the maxi-
mum x at which (3460+x)xx becomes equal to or smaller than
7100 is acquired from the equation 1, and a figure (16) is
acquired as “1.732” from x=2. A figure (17) is acquired as
“3462” from (3460+x). A value “6924” obtained by multi-
plying “3462” by “2” is acquired as a figure (18), the figure
(18) is subtracted from 7100, yielding a subtraction result
“176” as a figure (19). Further, a value ‘“3464” resulting from
addition of “2” to the figure (17) is acquired as the figure (20),
after which the step goes to the next calculation.

The following will discuss a case where the calculation
with figures written down on paper is carried out by the
arithmetic unit 300. As shown in the right-hand side in FIG.
17, “A+0.002—1.732” (corresponding to the figure (16)) is
setintheregister A, “Y+0.002—3.462” (corresponding to the
figure (17)) is set in the register Y, and “Y x0.002—0.006924”
(corresponding to the figure (18)) is set in the register Z. Then,
i (calculation start digit)=56 is set in the register I, w (calcu-
lation end word)=15 is set in the register W, and when the
operation starts, an operation on the output data of the register
X and the output data of the register Z is performed and the
operation result is set as “0.007100-0.006924—0.00176
(corresponding to the figure (19)) in the register X. Further,
“Y+0.002—3.464” (corresponding to the figure (20)) is set in
the register Y

‘When the type of calculation, “square root”, the number of
calculations, “3”, the calculation start digit, “56th digit”, and
the calculation end digit, “15th word”, are given as instruc-
tions, as described above, “1.732” is acquired as the operation
result.

Next, referring to FIGS. 18 to 20, a description will be
given of an operation method when “cube root™ is set as the
type of calculation, “3” is set as the number of calculations,

US 7,716,267 B2

23

“56-th digit (1=56)” is set as the calculation start digit and
“15-th word (w=15)" is set as the calculation end digit. In the
following description, the register section 360 in the arith-
metic unit 300 is illustrated as having five registers X, Y, Z, A
and B which are adequately changed from one to another in
use.

Arithmetic expressions on the left-hand side in FIGS. 18 to
20 are given for explaining the method of calculating a cube
root with figures written down on paper, and calculation pro-
cedures on the right-hand side in FIGS. 18 to 20 are given for
explaining the cube root calculation method that is executed
by the arithmetic unit 300. It is assumed that in acquiring a
cube root by calculation with figures written down on paper,
the values of individual digits are acquired based on the
following equation 2. As this method is well know, the
detailed description will not be given.

(a+b+ctd+ . . . P =a>+3a°b+3ab’+b3+(3a*+6ab+357)

c+(3a+3b)+(3a+3b)+3+ (2)

As shown in the left-hand side in FIG. 18, a figure (21) is
acquired from the equation 2 as a value “1” which, when
cubed, does not exceed “3” when “3” is the number of calcu-
lations. A cube root “1°” of the figure (21) is acquired as a
figure (22), and a subtraction result “2” obtained by subtract-
ing the figure (22) from the number of calculations “3” is
acquired as a figure (23). A figure (24) is acquired as a value
“3” obtained by multiplying the square root 1>, of the figure
(21) by “3”. A figure (25) is acquired as a value “3” obtained
by multiplying the figure (21) by “3”, after which the flow
goes to the next calculation.

The following will discuss a case where the calculation
with figures written down on paper is carried out by the
arithmetic unit 300. As shown in the right-hand side in FIG.
18, register X="3”, register Y="0", register Z="“0", register
W="0", and register A="0" are set at the beginning of an
operation. Next, “A+1—1" (corresponding to the figure (21))
is set in the register A, and “1°—1" (corresponding to the
figure (22)) is set in the register Z. Then, i (calculation start
digit)=62 is set in the register I, w (calculation end word)=15
is set in the register W, and when the operation starts, an
operation on the output data of the register X and the output
data of the register Z. is performed and the operation result is
set as “3-1—2" (corresponding to the figure (23)) in the
register X. Further, “3x1x1—3" (corresponding to the figure
(24)) is set in the register B, and “3x1—3" (corresponding to
the figure (25)) is set in the register Y.

Next, as shown in the left-hand side in FIG. 19, the maxi-
mum X at which 300xx, 30xx>, and x> become equal to or
smaller than 2000 is acquired from the equation 2, and a figure
(26) is acquired as “14” from x=4. A figure (27) is acquired as
“1200” from 300x4. A figure (28) is acquired as “480” from
30x42, and a figure (29) as “64” from 4°. Then, the Figs. (27)
to (29) are subtracted from 2000, yielding a subtraction result
“256” as a figure (30). Further, a value “588” obtained by
multiplying “3” by the square root “196” of the figure (26) is
acquired as a figure (31), and a value “42” obtained by mul-
tiplying “3” by the figure (26) is acquired as a figure (32).

The following will discuss a case where the calculation
with figures written down on paper is carried out by the
arithmetic unit 300. As shown in the right-hand side in FIG.
19, “A+0.4—1.4” (corresponding to the figure (26)) is set in
the register A, and “3x0.4—1.2” (corresponding to the figure
(27)) is set in the register 7. Then, i (calculation start
digit)=59 is set in the register I, w (calculation end word)=15
is set in the register W, and when the operation starts, an
operation on the output data of the register X and the output
data of the register Z is performed and the operation result is

5

15

20

25

30

35

40

45

50

55

60

65

24

set in the register X as ‘2.000-1.200—0.800”. Next,
“3%x0.4°—0.48” (corresponding to the figure (28)) is set in the
register Z, an operation on the output data of the register X
and the output data of the register Z is performed and the
operation result is set in the register X as
“0.800-0.480—0.320".

Further, “0.4>—0.064" (corresponding to the figure (29))
is set in the register Z, an operation on the output data of the
register X and the output data of the register Z is performed
and the operation result is set in the register X as “0.320-
0.064—0.256" (corresponding to the figure (30)).
“3x1.4>—5.88” (corresponding to the figure (31)) is set in the
register B, and “3x1.4—4.2” (corresponding to the figure
(32)) is set in the register Y.

Next, as shown in the left-hand side in FIG. 20, the maxi-
mum x at which 58800xx>, 420xx and 4° become equal to or
smaller than 256000 is acquired from the equation 2, and a
figure (33) is acquired as “144” from x=4. A figure (34) is
acquired as “235200” from 58800x4. A figure (35) is
acquired as “6720” from 420x4>, and a figure (36) as “64”
from 4°. Then, the Figs. (34) to (36) are subtracted from
256000, yielding a subtraction result “14016” as a figure (37).
Further, a value “62208” obtained by multiplying “3” by the
square root “20736” of the figure (33) is acquired as a figure
(38), and a value “432” obtained by multiplying “3” by the
figure (33) is acquired as a figure (38), after which the calcu-
lation is terminated.

The following will discuss a case where the calculation
with figures written down on paper is carried out by the
arithmetic unit 300. As shown in the right-hand side in FIG.
20, “A+0.04—1.44” (corresponding to the figure (33)) is set
in the register A, and “5.88x0.04—0.2352” (corresponding to
thefigure (34))is set in the register Z. Then, i (calculation start
digit)=59 is set in the register I, w (calculation end word)=15
is set in the register W, and when the operation starts, an
operation on the output data of the register X and the output
data of the register Z is performed and the operation result is
set in the register X as “0.25600-0.235200—0.020800".
Next, “4.2x0.4*—0.00672 (corresponding to the figure (35))
is set in the register Z, an operation on the output data of the
register X and the output data of the register Z is performed
and the operation result is set in the register X as “0.020800—
0.006720—0.014080".

Further, “0.04°—0.00064” (corresponding to the figure
(36)) is set in the register Z, an operation on the output data of
the register X and the output data of the register Z is per-
formed and the operation result is set in the register X as
“0.014080320-0.000064—0.014016” (corresponding to the
figure (37)). “3x1.44*—6.2208” (corresponding to the figure
(38))is setintheregister B, and “3x1.44—4.32” (correspond-
ing to the figure (39)) is set in the register Y.

‘When the type of calculation, “square root”, the number of
calculations, “3”, the calculation start digit, “56th digit”, and
the calculation end digit, “15th word”, are given as instruc-
tions, as described above, “1.44” is acquired as the operation
result.

In an operation to obtain a solution by repeatedly executing
calculation of multiple digits in order, as done in performing
an operation of a square root or a cube root, as described
above, multidigit calculation that is carried out sequentially
often corresponds to a single instruction which is executed
with certain digits designated. As the arithmetic unit 300 can
perform multidigit calculation with adequate digits desig-
nated in such a single instruction, therefore, it is easier to
create a program for performing an operation of a square root
or a cube root. In the operation of a square root or a cube root,
the unit of multidigit calculation which is executed in order

US 7,716,267 B2

25

coincides with the process unit in the arithmetic unit 300, so
that calculation can be done with the exact number of digits
set by the program. This can provide an operation result with
the required precision.

Effects of Second Embodiment

According to the second embodiment, the variable param-
eter memory section 320 of the arithmetic unit 300 has the
6-bit register | and the calculation start digit can be set by the
unit of a digit with the data i set in the register I. That is, the
calculation start digit can be set by the unit of a digit, so that
multidigit calculation can be separated into small decimal
calculations for individual units of digits from the calculation
start digit to the calculation end digit and can be carried out
calculation by calculation. As the calculation start digit and
the calculation end digit are set in a calculation instruction
beforehand by a program or the like created by a user, decimal
calculation with the exact number of calculation digits set by
the program instruction 311 in the program ROM 310 can be
performed, thereby easily ensuring efficient decimal calcula-
tion.

Because the computing unit 370 performs an calculation
every four digits while the digit unit for the calculation start
digit can be designated by the 6-bit register 1, the arithmetic
unit of the second embodiment can be achieved with approxi-
mately the same circuit configuration as that of the arithmetic
unit 200 of the first embodiment. In other words, the digit unit
can be designated with a simple circuit alteration while hardly
changing the program according to the number of calculation
digits, leading to cost reduction and downsizing of the deci-
mal calculation apparatus.

Modifications of Second Embodiment

(1) Unit of the Number of Calculation Digits

Although an operation is performed every four digits in
decimal notation with one word (16 bits) being a unit in the
second embodiment, the unit of the number of calculation
digits is not limited to four digits. When the designated cal-
culation digits are not a multiple of four, unnecessary data in
a calculation end word is masked. Instead, an operation may
be started every four digits from a predetermined n-th word
including the calculation start digit and unnecessary data in
the calculation start word may be masked.

(2) Variable Calculation End Digit

Although the calculation end digit is designated word by
word by the register W in the second embodiment, the vari-
able parameter memory section 320 may be further provided
with a 6-bit register which can designate the calculation end
digit by a digit unit.

(3) Making the Number of Calculation Digits in Exponent
Portion Variable

Although any one of the second to fifteenth words is taken
as a calculation start digit or a calculation start word, or a
calculation end digit and the number of calculation digits in
the imaginary portion is set variable in the second embodi-
ment, the number of calculation digits in the exponent portion
may be made variable.

(4) The Number of Words in a Register

Although the number of words in the register section 360
has been illustrated as “16”, the number is in no way restric-
tive. Although the size of the imaginary portion is set to 14
words and the size of the exponent portion is set to 2 words,
the word ratio may be changed as needed.

10

15

20

25

35

40

45

55

60

65

26
(5) The Number of Registers
Although the number of registers in the register section 360
has been mentioned to be “4” or “5” in the second embodi-
ment, the number of registers is not restrictive.

Third Embodiment

A third embodiment will be described below.

An arithmetic system according to the third embodiment is
designed to improve the operation speed by pipelining an
operation in a computing unit. The following will discuss a
case where pipeline processing is adapted to the arithmetic
unit 200 of the arithmetic system S1 of the first embodiment.
Same reference symbols are given to those components
which are identical to the corresponding components of the
first embodiment to avoid otherwise redundant illustrations
and detailed descriptions. The detailed description given
below is centered on the unique portions of the third embodi-
ment.

FIG. 21 is a diagram showing the component blocks of the
essential portions that are associated with pipeline processing
of the computing unit. Referring to the diagram, the compo-
nent blocks associated with pipeline processing include a
computing unit 270, a register section 260, and an address
counter 240. As the register section 260 is a dual port register
having two ports for each of address designation and data
output, the register section is illustrated, for the sake of con-
venience, as an F register 260a having a first port and an S
register 260b having a second port. In an actual circuit, the
register section 260 may be constituted physically by a single
memory. The address counter 240, which outputs addresses to
the two ports of the register section 260, comprises an address
counter 240a which outputs an address to the first port, and an
address counter 2405 which outputs an address to the second
port.

The F register 260a, which is accessible by two words (32
bits), reads 32 bits of data from an address designated by the
address counter 240a and sends the data to the computing unit
270. The F register 260a writes two words (32 bits) of data,
input from the computing unit 270 at an address designated by
the address counter 240q. That is, the F register 260a alter-
nately carries out reading of 32-bit data and writing of 32-bit
data every clock.

The S register 2605, which is accessible by one word (16
bits), reads 16 bits of data from an address designated by the
address counter 2405 and sends the data to the computing unit
270.

The computing unit 270 comprises a multiplication circuit
270a, a latch circuit 270b, a read flip-flop (F/F) 270c, a
selector 270d, an addition circuit 270e, and a write F/F 270f.
The multiplication circuit 270a multiplies 16-bit data, input
from the S register 26056, by 4-bit data, input from the latch
circuit 2705, and sends the multiplication result as 16-bit data
to the addition circuit 270e. The latch circuit 2705, which is
constituted by a flip-flop (F/F), holds 4-bit data, and sends the
data to the multiplication circuit 270a.

The read F/F 270c¢ holds 16-bit data, input from the F
register 260a, and sends the data to the selector 2704 alter-
nately selects 16-bit data from the F register 260a and 16-bit
data from the read F/F 270¢, and sends the selected data to the
addition circuit 270e every clock.

The addition circuit 270e adds 16-bit data from the multi-
plication circuit 270a and 16-bit data from the selector 270d
as operands, and sends the addition result as 16-bit data to the
write F/F 270f and the F register 260a. The addition circuit
270e sends a part of the addition result as 4-bit data to the latch

US 7,716,267 B2

27
circuit 2705. The write F/F 2701 holds 16-bit data from the
addition circuit 270¢, and sends the data to the F register
260aq.

The operation of the computing unit 270 will be described
referring to a timing chart illustrated in FIG. 22. FIG. 22
shows the timing chart of sum of products which is executed
based on a calculation instruction “X0~5+Y0~5". In the dia-
gram, X is data which is input and output to and from the F
register 260a, Y is data which is output from the S register
2605, and M is data which is output from the latch circuit
2705.

First, at the first clock, data X0 and X1 are read from the F
register 260a, and the data X0 is selected by the selector 2704
and is output to the addition circuit 270e. The data X1 is held
in the read F/F 270c¢. DataY0 is read from the S register 2605
and is output to the multiplication circuit 270a.

At the second clock, a sum of products “X0+YO0xM” is
carried out by the multiplication circuit 270« and the addition
circuit 270e. The data X1 is output to the selector 2704 from
the read F/F 270c, is selected by the selector 2704, and is
output to the addition circuit 270e. Data Y1 is read from the S
register 2604 and is output to the multiplication circuit 270a.

At the third clock, a sum of products “X1+Y1xM?” is car-
ried out by the multiplication circuit 270a and the addition
circuit 270¢. The result of the operation of “X0+YOxM”
performed previously is held in the write F/F 270f. Data X2
and X3 are read from the F register 260a. The data X2 is
selected by the selector 2704, and is output to the addition
circuit 270e. The data X3 is held in the read F/F 270¢. Data' Y2
is read from the S register 2604 and is output to the multipli-
cation circuit 270a.

At the fourth clock, the result of the operation of “X0+Y0x
M held in the write F/F 270f, and the result of the operation
of “X1+Y1xM” output from the addition circuit 270e are
written at X0 and X1 in the F register 260a. A sum of products
“X2+Y2xM” is carried out by the multiplication circuit 270a
and the addition circuit 270e. The data X3 is output to the
selector 2704 from the read F/F 270c, is selected by the
selector 2704, and is output to the addition circuit 270e. Data
Y3 is read from the S register 2605 and is output to the
multiplication circuit 270a.

As apparent from the above, the sum of products based on
the calculation instruction “X0~5+Y0~5" is performed in
such a way that one cycle is executed in four clocks, and at and
following the third clock, the process is carried out sequen-
tially with two clocks overlapping the next cycle, thereby
ensuring a fast operation. That is, the sum of products is
performed in such a way that two operations (e.g., X0+YOxM
and X1+Y1xM) are executed in one cycle, and “X0~5+
YO0~5” requires three cycles for it includes six operations, so
that the total number of clocks is 3x4=12 clocks. However,
pipelining permits three cycles to be executed in eight clocks,
thus shortening the operation time by four clocks.

Effects of Third Embodiment

According to the third embodiment, as described above,
the input stage and the output stage of the F register that is
accessible with 32-bit data (two words) are provided with the
write F/F 270/ and the read F/F 270c¢ as temporary memory
sections in which write data and read data, 16 bits each, are
respectively held temporarily. Pipelining is accomplished by
alternately executing writing and reading of 32-bit data to and
from the F register 260a clock by clock at the same time as
calculation of 16-bit data is executed in the computing unit
270 clock by clock. This can improve the operation speed of
the arithmetic unit.

10

15

20

25

30

35

40

45

50

55

60

65

28
Modifications of Third Embodiment

The calculation instruction “X0~5+4Y0~5” is just an
example, and the calculation start word and the calculation
end word can be changed as needed. For a calculation instruc-
tion “X0~n+YO0-~n", for example, when n is an odd value, a
sum of products can be performed with the number of
clocks=n+3. Although the foregoing description of the third
embodiment has been given of the case where the component
blocks include the multiplication circuit 270a and the addi-
tion circuit 270e and a sum of products is performed, an
operation is not limited to a sum of products but other various
operations can be adapted.

Although the foregoing description of the third embodi-
ment has been given of the case where pipelining is carried
out by the arithmetic unit 200 of the first embodiment, pipe-
lining may be carried out by the arithmetic unit 300 of the
second embodiment. In this case, a pipelined operation can be
performed with the calculation start digit designated by a
digit unit.

Fourth Embodiment

A fourth embodiment will be described below.

FIG. 23 is a schematic structural diagram of an arithmetic
system S3 according to the fourth embodiment. Referring to
the diagram, the arithmetic system S3 is designed in such a
way that the PC 100 and a USB arithmetic unit 400 are
connected together via their respective USB terminals U2 and
Ul.

The PC 100 receives operation data input through an input
device, such as a keyboard, and sends the input operation data
to the USB arithmetic unit 400 connected via the USB termi-
nals U2 and U1. In the fourth embodiment, operation data is
data including the type of an operation (e.g., four arithmetic
operations, elementary functions, and advanced functions),
numeric data to be subjected to operations (the number of
operands and the number of operations), and the number of
effective digits (number of calculation digits). When receiv-
ing an operation result from the USB arithmetic unit 400, the
PC 100 displays the operation result on a display device, such
as a monitor.

FIG. 24 is a block diagram showing the structures of the
essential portions of the USB arithmetic unit 400. Referring
to the diagram, the USB arithmetic unit 400 comprises a CPU
401, a flash memory 402, an SRAM 403, a ROM 404, a
communication control section 405, and a shared memory
406.

The CPU 401, constituted by an FPGA (Field Program-
mable Gate Array) or the like, reads a system program stored
in the ROM 404, and various processing programs stored in
the flash memory 402, and performs the general control ofthe
apparatus and various kinds of operation processes. The CPU
401 is equivalent to the arithmetic unit 200 of the first embodi-
ment shown in FIG. 3 or the arithmetic unit 300 of the second
embodiment shown in FIG. 9. As the CPU 401 performs an
operation from the designated calculation start digit or the
designated calculation start word to a calculation end word,
therefore, various operations can be executed with the desired
number of calculation digits.

The flash memory 402, constituted by an electrically pro-
grammable non-volatile memory, stores various operation
programs and stores an operation program, transferred from
the PC 100, in a rewritable manner. A program stored in the
flash memory 402 is used, for example, after being expanded
on the program ROM 210 in the first embodiment.

US 7,716,267 B2

29

The SRAM 403 is a memory section to be used as a word
area or the like for the CPU 401, and stores a program read
from the flash memory 402 or the ROM 404, and the results of
an operation or so preformed by the CPU 401. The ROM 404
is equivalent to the register section 260 in the arithmetic unit
200 of the first embodiment or the register section 360 in the
arithmetic unit 300 of the second embodiment.

The ROM 404 stores, for example, the system program for
setting the initial states of the main body of the apparatus, and
a communication control program for executing data com-
munication with another apparatus connected by the USB
terminal.

The communication control section 405, which has the
USB terminal U1, controls data communication based on the
USB standards with another apparatus connected by the USB
terminal U1. Specifically, the communication control section
405 performs a communication control routine of performing
serial or parallel conversion of data received from the PC 100,
and writing the converted data in the shared memory 406,
reading an operation result when the operation result is writ-
ten in the shared memory 406 by the CPU 401 and transfer-
ring data to the PC 100.

The shared memory 406, constituted by an electrically
programmable memory, stores operation data received from
the PC 100 (e.g., the type of an operation, numeric data to be
subjected to operations, and the number of effective digits)
and an operation result or so output from the CPU 401.

The operation of the arithmetic system S2 according to the
fourth embodiment will be described next. FIG. 25A is a
flowchart illustrating a communication routine which is
executed by the PC 100, FIG. 25B is a flowchart illustrating a
communication routine which is executed by the communi-
cation control section 405, and FIG. 25C is a flowchart illus-
trating a communication routine which is executed by the
CPU 401.

To begin with, the communication routine which is
executed by the PC 100 will be discussed. As shown in FIG.
25A, when operation data is input according to the invention
a user manipulation (step ST31), the PC 100 sends the input
operation data to the USB arithmetic unit 400 connected via
the USB terminal U2 (step ST32).

Next, the PC 100 stands by for reception of an operation
result from the USB arithmetic unit 400 (step ST33). When
receiving the operation result (step ST34), the PC 100 dis-
plays the received operation result on a display section (not
shown) (step ST35), and terminates the communication rou-
tine.

Next, a description will be given of the communication
routine which is executed by the communication control sec-
tion 405. As shown in FIG. 25B, when receiving operation
data from the PC connected via the USB terminal U1 (step
ST41), the communication control section 405 writes the
received operation data in the shared memory 406 (step
ST42). Then, the communication control section 405 cancels
outputting of a reset signal to the CPU 401 and operates the
CPU 401 (step ST43).

Then, the communication control section 405 monitors a
busy signal from the CPU 401 (step ST44). When the busy
signal is disabled (step ST44; OFF), the communication con-
trol section 405 outputs the reset signal to stop the operation
of the CPU 401 (step ST45). The communication control
section 405 reads an operation result, written in the shared
memory 406 by the CPU 401, from the shared memory 406
(step ST46), sends the operation result to the PC 100 (step
ST47), then terminates the communication routine.

Next, a description will be given of the communication
routine which is executed by the CPU 401 of the USB arith-

10

15

20

25

30

35

40

45

50

55

60

65

30

metic unit 400. As shown in FIG. 25C, the CPU 401 discrimi-
nates whether the reset signal from the communication con-
trol section 405 has been canceled or not (step ST51). When
the output of the reset signal has been canceled (step ST51;
YES), the CPU 401 enables the busy signal and sends the
busy signal to the communication control section 405 (step
ST52). Then, the CPU 401 reads operation data from the
shared memory 406 (step ST53), and executes an operation
process (step ST54).

The operation process will be described next. FIG. 26 is a
flowchart illustrating an operation process which is executed
by the CPU 401. As shown in FIG. 26, the CPU 401 reads
from the ROM an operation program corresponding to the
type of an operation data included in the operation data (step
ST61). Then, the CPU 401 sets the number of calculation
digits of a calculation instruction and the type of calculation
in the operation program in association with the number of
effective digits included in the operation data, and executes
each calculation instruction to perform calculation in the
operation program (step ST62).

‘When the operation process is finished, the CPU 401 writes
the operation result in the shared memory 406 (step ST55),
and disables the busy signal to stop outputting the busy signal
to the communication control section 405 (step ST56). Then,
the CPU 401 goes to step ST51 to repeatedly execute the
process.

Effects of Fourth Embodiment

According to the fourth embodiment, as described above,
the USB arithmetic unit 400 and the PC 100 are connected
together by their USB terminals Ul and U2, operation data
(e.g., the type of an operation, numeric data to be subjected to
operations, and the number of effective digits) is input from
the PC 100, and the USB arithmetic unit 400 performs an
operation with the desired number of calculation digits based
on the operation data and sends the operation result to the PC
100. The operation result is displayed on the display section
of the PC 100, so that even a PC which does not have a
function of performing decimal calculation with an arbitrary
number of calculation digits can perform decimal calculation
with the desired number of calculation digits.

Modifications of Fourth Embodiment

Although the foregoing description of the fourth embodi-
ment has been given of the case where data communication
according to the USB standards is performed, the communi-
cation system is not limited to the USB system but may be
wireless communication or the like which conforms to the
SCSI (Small Computer System Interface) standards or the
IrDA (Infrared Data Association) standards. Electronic
devices to be connected to the USB arithmetic unit 400 are not
limited to personal computers, but may be a PDA (Personal
Data Assistant), a notebook type computer, a portable termi-
nal and the like.

Although operation data has been described as including
the type of an operation, numeric data to be subjected to an
operation and the number of effective digits, operation data is
not limited to such data. For example, operation data may
include the calculation start digit or the calculation start word,
and the calculation end digit, based on which the number of
calculation digits is acquired.

Alternatively, the arithmetic system S3 may be designed
like an arithmetic system S4 as shown in FIG. 27. When
operation data is input, a PC 200 creates an operation program
based on the input operation data. Specifically, an operation

US 7,716,267 B2

31

program according to an operation type, input by, for
example, setting each number of calculation digits in the
program to the number of digits corresponding to the number
of effective digits is generated. Then, the generated operation
program is sent to a USB arithmetic unit 500. In this case, the
USB arithmetic unit 500 performs decimal calculation by
executing each calculation instruction according to the opera-
tion program received from the PC 200. This configuration
can permit generation of various kinds of operation programs
on the PC 200 which is advantageous over the USB arithmetic
unit 500 from the viewpoint of the memory capacity, so that
the USB arithmetic unit 500 can execute a greater number of
operation programs.

Fifth And Sixth Embodiments (Description of
Common Portions)

Referring to FIGS. 29 to 39, a fifth embodiment in which
the invention is adapted to a graph function electronic calcu-
lator, one type of arithmetic control unit, will be described in
detail.

FIG. 29 is a schematic diagram of a graph function elec-
tronic calculator 101. As illustrated in the diagram, the graph
function electronic calculator 101 comprises a key group 103
including various kinds of operation keys, and a display 104.

The key group 103 includes keys that allow a user to input
a numeral to the graph function electronic calculator 101 and
to display an instruction to display an operation result. For
example, the key group 103 has numeric keys 1034, a direc-
tion key 1035, an EXE key 103¢, an underflowed-digit-num-
ber display key 103d, an effective-precision-digit-number
display key 103e, a digit-number-increase display key 103/
and an underflow-portion distinctive display key 103g.

The numeric keys 103a are for inputting numerals. The
direction key 1035 is to be depressed to, for example, move
the cursor and select a function, and is so designed as to be
able to input an instruction in the up, down, right and left
directions.

The EXE key 103c is for instructing the graph function
electronic calculator 101 to execute and decide a process. The
underflowed-digit-number display key 1034 is for giving an
instruction to display the number of underflowed digits in the
result of an operation performed. The effective-precision-
digit-number display key 103e is for giving an instruction to
display the number of effective precision digits. The number
of effective precision digits is the number of digits of the
effective precision in an operation result excluding under-
flowed digits, and is acquired by the difference between the
number of operation digits input by a user and the number of
underflowed digits.

The digit-number-increase display key 103f1s for giving an
instruction to display an operation result in a case where an
operation is performed with an added operation digit number
having a predetermined number of additional digits added to
the number of operation digits input by a user. The underflow-
portion distinctive display key 103g is for giving an instruc-
tionto display the values ofunderflowed digits in an operation
result and the other values distinctively in different display
modes.

FIG. 30 is a block diagram showing the structure of the
graph function electronic calculator 101. Referring to the
diagram, the graph function electronic calculator 101 com-
prises a CPU 120, an input section 130, a display section 140,
a ROM 150, a RAM 160, and a decimal computing unit 170,
which are connected to one another in a data communicatable
manner by a bus 180.

10

15

20

25

35

40

45

50

55

60

65

32

Based on an instruction input through the input section
130, the CPU 120 reads a predetermined program from the
ROM 150, temporarily stores the program in the RAM 160,
and performs various processes, such as detection of the
number of underflowed digits in the result of an operation,
performed by the decimal computing unit 170 using the pro-
gram, and detection of the number of effective precision
digits, and displays the processing result on the display sec-
tion 140. That is, the CPU 120 serves to generally control the
individual sections of the graph function electronic calculator
101.

The input section 130 is an input device having keys
including numeric keys and a direction key, and sends a signal
of a depressed key to the CPU 120. Key inputs through the
input section 130 realize input means for inputting numerals,
executing an operation, and instructing execution of a display
process. The input section 130, which corresponds to the key
group 103 shown in FIG. 29, should not necessarily be keys
but may be a touch panel.

The display section 140 displays various screens based on
various signals input from the CPU 120, and corresponds to
the display 104 shown in FIG. 29.

Stored in the ROM 150 are a program for achieving each
embodiment to be discussed later as well as a program and
data for initializing the graph function electronic calculator
101 when powered ON. The ROM 150 will be discussed as a
ROM 151 in a fifth embodiment and a ROM 153 in a sixth
embodiment.

The RAM 160 is a memory area serving as a work area for
the CPU 120 to temporarily store various kinds of data. The
RAM 160 will be discussed asa RAM 161 in the fifth embodi-
ment and a RAM 163 in the sixth embodiment.

The decimal computing unit 170 has a program ROM 171
and is an arithmetic unit which executes a decimal operation
according to machine instructions of a machine program, and
can perform an operation data in an arbitrary number of digits
designated. Stored in the program ROM 171 are an arbitrary
digit number operation program 172 for performing an opera-
tion in an arbitrary number of digits input, and a plural opera-
tion types 173.

The decimal computing unit 170 has a circuit structure
similar to that of the decimal arithmetic unit 300 in F1IG. 9. As
the detailed description of the arithmetic unit 300 has already
been give, the detailed description of the decimal computing
unit 170 is omitted.

Fifth Embodiment

The fifth embodiment will be described below referring to
FIGS. 31A to 36B.

To begin with, the structure of the fifth embodiment will be
discussed.

FIG. 31A is a diagram showing the structure of the ROM
151 that the graph function electronic calculator 101 accord-
ing to the fifth embodiment has in place of the ROM 150 in
FIG. 30. Stored in the ROM 151 is a first operation display
program 152 which is read and executed by the CPU 120 asa
first operation display routine (see FIG. 32).

The first operation display routine is to execute an opera-
tion according to the input number of operation digits and the
designated operation type, detect the number of underflowed
digits and the number of effective precision digits of an opera-
tion result acquired by executing the operation, and display
the operation result and notification of digit under flowing
according to various display instructions. The operation of
the first operation display routine will be described later in
detail.

US 7,716,267 B2

33

FIG. 31B is a diagram showing the structure of the RAM
161 that the graph function electronic calculator 101 accord-
ing to the fifth embodiment has in place of the RAM 160 in
FIG. 30. The RAM 161 has an operation-digit-number stor-
age area 1611 for storing the number of operation digits input,
an operation-type storage area 1613 for storing a designated
operation type, an operand storage area 1615 for storing an
input operand, an underflowed-digit-number storage area
1617 for storing the number of digits underflowed through an
operation, and an effective-precision-digit-number storage
area 1619 for storing the number of effective precision digits
of an operation result. The “number of operation digits™ indi-
cates the number of digits to be subjected to an operation, and
the “operation type” indicates the type of a function to be
subjected to an operation.

The operation of the fifth embodiment will now be dis-
cussed.

FIG. 32 is a flowchart illustrating the flow of a first opera-
tion display routine which is executed by the graph function
electronic calculator 101 as the CPU 120 reads and executes
the first operation display program 152.

When the number of operation digits is input through the
input section 130 by a user (step Al), the CPU 120 stores the
input number of operation digits in the operation-digit-num-
ber storage area 1611. When an operation type is designated
by the user (step A3), the CPU 120 stores the designated
operation type in the operation-type storage area 1613. When
an operand is input by the user (step A5), the CPU 120 stores
the input operand in the operand storage area 1615.

Next, the CPU 120 generates a machine program for
executing an operation with the designated operation type in
the input number of operation digits by using the input oper-
and, and causes the decimal computing unit 170 to execute the
operation (hereinafter called “first operation (designated digit
operation)”) (step A7). The CPU 120 also generates a
machine program for executing the operation with the desig-
nated operation type in the added number of operation digits
which is acquired by adding a predetermined number of addi-
tional digits (e.g., “four digits™) to the input number of opera-
tion digits, and causes the decimal computing unit 170 to
execute the operation (hereinafter called “second operation
(additional digit operation)”) (step A9).

Next, the CPU 120 performs normalization of setting the
values of the most significant digits of operation results
obtained through the first operation (designated digit opera-
tion) and the second operation (additional digit operation)
(hereinafter respectively called “first operation (designated
digit operation) result” and “second operation (additional
digit operation) result”) to other than “0” (step A11).

Then, the CPU 120 compares the first operation (desig-
nated digit operation) result with the second operation (addi-
tional digit operation) result and detects the number of digits
which do not have a match as the number of underflowed
digits (step A13), and stores the number of underflowed digits
in the underflowed-digit-number storage area 1617. The CPU
120 detects the number of effective precision digits using the
detected number of underflowed digits (step A15), and stores
the number of effective precision digits in the effective-pre-
cision-digit-number storage area 1619. The “number of effec-
tive precision digits” is the number of digits of the effective
precision in the first operation (designated digit operation)
result excluding the underflowed digits, and is detected as the
difference between the input number of operation digits and
the number of underflowed digits.

Next, the CPU 120 displays the first operation (designated
digit operation) result on the display section 140 (step A17).
Then, the CPU 120 discriminates whether an underflowed-

5

10

15

20

35

40

45

50

55

60

65

34

digit-number display is instructed or not by checking if the
underflowed-digit-number display key 103d is depressed
(step A19). When the CPU 120 decides that such an instruc-
tion is given (step A19; YES), the CPU 120 displays the
number of underflowed digits detected at step A13 on the
display section 140 (step A21). When the CPU 120 does not
decide that such an instruction is given (step A19; NO), the
CPU 120 goes to step A23.

Then, the CPU 120 discriminates whether an effective-
precision-digit-number display is instructed or not by check-
ing if the effective-precision-digit-number display key 103e
is depressed (step A23). When the CPU 120 decides that such
an instruction is given (step A23; YES), the CPU 120 displays
the number of effective precision digits detected at step A15
on the display section 140 (step A25). When the CPU 120
does not decide that such an instruction is given (step A23;
NO), the CPU 120 goes to step A27.

Then, the CPU 120 discriminates whether a digit-number-
increase display is instructed or not by checking if the digit-
number-increase display key 103/ 'is depressed (step A27).
When the CPU 120 decides that such an instruction is given
(step A27; YES), the CPU 120 displays the second operation
(additional digit operation) result on the display section 140
(step A29). When the CPU 120 does not decide that such an
instruction is given (step A27; NO), the CPU 120 goes to step
A31.

Then, the CPU 120 discriminates whether an underflow-
portion distinctive display is instructed or not by checking if
the underflow-portion distinctive display key 103g is
depressed (step A31). Whenthe CPU 120 decides that such an
instruction is given (step A31; YES), the CPU 120 displays
the values of the underflowed digits in the first operation
(designated digit operation) result and the other values dis-
tinctively in different display modes (step A33), and then
terminates the first operation (designated digit operation) dis-
play routine.

When the CPU 120 does not decide at step A31 that the
underflow-portion distinctive display instruction is given
(step A31; NO), the CPU 120 terminates the first operation
(designated digit operation) display routine.

The processes discussed above will be described specifi-
cally referring to display screen examples.

FIG. 33A shows a display screen 4010 which is one
example of display screens to be displayed on the display
section 140 of the graph function electronic calculator 101.

The upper portion of the display screen 4010 shows an
operation-digit-number input box 4011 through which a user
inputs the number of operation digits, an operation-type des-
ignation box 4013 for designating an operation type, and an
operand input box 4015 for inputting an operand. The opera-
tion type can be selected and designated from a pull-down
menu.

The lower portion of the display screen 4010 shows an
operation-result display box 4017 which displays the first
operation (designated digit operation) result, a digit-number-
increase display box 4019 which displays the second opera-
tion (additional digit operation) result, an underflowed-digit-
number display box 4021 which displays the number of
underflowed digits, and an effective-precision-digit-number
display box 4023 which displays the number of effective
precision digits.

The lowest portion of the display screen 4010 shows four
types of display instructions 4025, so that the user under-
stands, at a glance, which display instruction has been given.
When the underflowed-digit-number display key 103d is
depressed to instruct the underflowed-digit-number display,

US 7,716,267 B2

35

for example, the portion displayed as “number of under-
flowed digits” in the display instructions 4025 is highlighted.

FIG. 33B shows the display screen 4010 when an operation
type is designated from the pull-down menu. The pull-down
menu of the operation-type designation box 4013 shows a
plurality of operation types, such as “x>”, and “logx”; in the
example, “(14+x)*>~17, which is one type of calculation of
compound interest and is indicated by “4013a”, is designated
and highlighted.

FIG. 34 A shows the display screen 4010 when the user has
input the number of operation digits, has designated the
operation type and has input an operand. “8” indicated by
“4011a” is input as the number of operation digits in the
operation-digit-number input box 4011 (step Al in FIG. 32),
and “(1+x)*-17, indicated by “4013a”, is designated as the
operation type in the operation-type designation box 4013
(step A3 in FIG. 32). In the operand input box 4015,
“0.00123”, indicated by “4015a”, is designated as an operand
(a value to be set in a variable x in this example) (step A5 in
FIG. 32).

FIG. 34B shows the display screen 4010 when the first
operation (designated digit operation) result is displayed. In
the operation-result display box 4017, “3.6945000 e-3”, indi-
cated by “4017a”, is displayed as the first operation (desig-
nated digit operation) result (step A17 in FIG. 32). Of the first
operation (designated digit operation) result, “3.6945000”
indicates an imaginary portion and “e-3” indicates an expo-
nent portion.

FIG. 35A shows the display screen 4010 when the under-
flowed-digit-number display is instructed by the user. As the
underflowed-digit-number display instruction is given (step
A19 in FIG. 32; YES), the “number of underflowed digits” at
the lowest portion of the display screen 4010 is highlighted as
“4025a”, and “3”, indicated by “4021a”, is displayed as num-
ber of underflowed digits in the underflowed-digit-number
display box 4021 (step A21 in FIG. 32). This makes it appar-
ent that the first operation (designated digit operation) result
has three underflowed digits.

FIG. 35B shows the display screen 4010 when the effec-
tive-precision-digit-number display is instructed by the user.
As the effective-precision-digit-number display instruction is
given (step A23 in FIG. 32; YES), the “effective precision™ at
the lowest portion of the display screen 4010 is highlighted as
“4025b”, and “5”, indicated by “4023a”, is displayed as the
number of effective precision digits in the effective-preci-
sion-digit-number display box 4023 (step A25 in FIG. 32).
This makes it apparent that the number of effective precision
digits of the first operation (designated digit operation) result
is five.

FIG. 36 A shows the display screen 4010 when the digit-
number-increase display is instructed by the user. As the
digit-number-increase display instruction is given (step A27
in FIG. 32; YES), the “digit increase display” at the lowest
portion of the display screen 4010 is highlighted as “4025¢”,
and “3.69454056000 e-3”, indicated by “4019a”, is displayed
as the second operation (additional digit operation) result in
the digit-number-increase display box 4019 (step A29 in FIG.
32). That is, it is understood that the second operation (addi-
tional digit operation) has been executed in the added number
of operation digits of 12 digits resulting from 4 digits added as
additional digits to the input number of operation digits of 8
digits (step A9 in FIG. 32). Comparing 4017a or the first
operation (designated digit operation) result with 40194 or
the second operation (additional digit operation) result, the
values of the lower three digits of the first operation (desig-
nated digit operation) result do not match with the values of
the corresponding digits of the second operation (additional

10

15

20

25

30

35

40

45

50

55

60

65

36

digit operation) result, so that the user understands that the
lower three digits of the first operation (designated digit
operation) result have underflowed. The result of the opera-
tion with the added number of operation digits provides an
operation result with a higher precision.

FIG. 36B shows the display screen 4010 when the under-
flow-portion distinctive display is instructed by the user. As
the underflow-portion distinctive display instruction is given
(step A33 in FIG. 32; YES), the “distinctive display” at the
lowest portion of the display screen 4010 is highlighted as
“4025d”, and “0” in the lower three digits or the underflowed
portion in the first operation (designated digit operation)
result is distinctively displayed in the form of a subscript (step
A35 in FIG. 32). This allows the user to see, at a glance, that
the lower three digits in the first operation (designated digit
operation) result displayed are underflowed.

According to the fifth embodiment, as described above, an
operation is executed according to the number of operation
digits input and the designated operation type, and the num-
ber of underflowed digits and the number of effective preci-
sion digits of the acquired operation result are detected,
thereby presenting a display which notifies underflow of dig-
its. It is therefore possible to realize an arithmetic control unit
capable of notifying underflow of digits by executing an
operation according to the number of operation digits input,
and detecting the exact number of underflowed digits of the
acquired operation result.

[Medifications]

Although the value of the underflowed portion is identified
by a subscript in the underflow-portion distinctive display at
step A33, the identification method is not limited to this
particular type. For example, the identification may be made
by the thickness of a line in such a way that the value of the
underflowed portion is displayed in thin letters while the other
values are displayed in bold, or by colors in such a way that
the value of the underflowed portion is displayed in red while
the other values are displayed in black.

The four types of display instructions have been explained
as being independent of one another and being display indi-
vidually. When a plurality of desired display instructions are
given simultaneously, however, the displays may be made
simultaneously. When the underflowed-digit-number display
instruction and the digit-number-increase display instruction
are given simultaneously, for example, simultaneously dis-
play of the number of underflowed digits and the second
operation (additional digit operation) result allows the user to
grasp the occurrence of underflowed digits more easily.

Sixth Embodiment

Referring to FIGS. 37A t0 39, a description will be given of
the sixth embodiment in which the invention is adapted to a
graph function electronic calculator which is one type of
arithmetic control unit.

The sixth embodiment will be described below referring to
FIGS. 37A to 39.

To begin with, the structure of the sixthembodiment will be
discussed.

FIG. 37A is a diagram showing the structure of the ROM
153 that the graph function electronic calculator 101 accord-
ing to the sixth embodiment has in place of the ROM 150 in
FIG. 30. Stored in the ROM 153 is a second operation display
program 154 which is read and executed by the CPU 120 as a
second operation (additional digit operation) display routine
(see FIG. 38).

US 7,716,267 B2

37

The second operation (additional digit operation) routine is
to execute an operation according to the input number of
operation digits and the designated operation type, detect the
number of underflowed digits of an operation result acquired
by executing the operation, and display the operation result
with underflowed digits corrected. The operation of the sec-
ond operation (additional digit operation) routine will be
described later in detail.

FIG. 37B is a diagram showing the structure of the RAM
161 that the graph function electronic calculator 101 accord-
ing to the sixth embodiment has in place of the RAM 160 in
FIG. 30. The RAM 163 has an operation-digit-number stor-
age area 1631 for storing the number of operation digits input
by a user, an operation-type storage area 1633 for storing a
designated operation type, an operand storage area 1635 for
storing an input operand, and an underflowed-digit-number
storage area 1637 for storing the number of digits under-
flowed through an operation. The number of operation digits
and the operation type are the same as those of the fifth
embodiment.

The operation of the sixth embodiment will now be dis-
cussed.

FIG. 38 is a flowchart illustrating the flow of a second
operation (additional digit operation) routine which is
executed by the graph function electronic calculator 101 as
the CPU 120 reads and executes the second operation display
program 154.

When the number of operation digits is input through the
input section 130 by a user (step B1), the CPU 120 stores the
input number of operation digits in the operation-digit-num-
ber storage area 1631. When an operation type is designated
by the user (step B3), the CPU 120 stores the designated
operation type in the operation-type storage area 1633. When
an operand is input by the user (step B5), the CPU 120 stores
the input operand in the operand storage area 1635.

Next, the CPU 120 generates a machine program for
executing an operation with the designated operation type in
the input number of operation digits by using the input oper-
and, and causes the decimal computing unit 170 to execute the
operation (first operation (designated digit operation)) (step
B7). The CPU 120 also generates a machine program for
executing the operation with the designated operation type in
the added number of operation digits which is acquired by
adding a predetermined number of additional digits (e.g.,
“four digits™) to the input number of operation digits, and
causes the decimal computing unit 170 to execute the opera-
tion (second operation (additional digit operation)) (step B9).

Next, the CPU 120 performs normalization of setting the
values of the most significant digits of operation results
obtained through the first operation (designated digit opera-
tion) and the second operation (additional digit operation) to
other than “0” (step B11).

Then, the CPU 120 compares the first operation (desig-
nated digit operation) result with the second operation (addi-
tional digit operation) result and detects the number of digits
which do not have a match as the number of underflowed
digits (step B13), and stores the number of underflowed digits
in the underflowed-digit-number storage area 1637.

Thereafter, the CPU 120 discriminates whether or not the
sum of the number of underflowed digits detected at step B13
and the number of operation digits input at step B1 is equal to
or smaller than the added operation digit number with which
the second operation (additional digit operation) has been
executed at step B9 (step B15). When it is discriminated that
the sum is not equal to or smaller than the added operation
digit number (step B15; NO), the CPU 120 causes the decimal
computing unit 170 to execute the second operation (addi-

10

15

20

25

30

35

40

45

50

55

60

65

38

tional digit operation) again with a new added operation digit
number obtained by adding a predetermined additional num-
ber of digits and the detected number of underflowed digits to
the input number of operation digits (step B17).

Then, the CPU 120 performs normalization again to set the
value of the most significant digit of the second operation
(additional digit operation) result to other than O (step B19),
rounds off the normalized second operation (additional digit
operation) result to the input number of operation digits (step
B21), display the rounded second operation (additional digit
operation) result on the display section 140 (step B23), then
terminates the second operation (additional digit operation)
routine. When it is discriminated that the sum is equal to or
smaller than the added operation digit number (step B15;
YES), the CPU 120 goes to step B21.

The processes discussed above will be described specifi-
cally referring to display screen examples.

FIG. 39A shows a display screen 4030 which is one
example of display screens to be displayed on the display
section 140 of the graph function electronic calculator 101.

“8” digits, “(1+x)°~1) and “0.00123” are input and desig-
nated on the display screen 4030 respectively as the number
of operation digits, the operation type and an operand, as per
the first embodiment (steps B1 to B5 in FIG. 38). In the
embodiment, the second operation (additional digit opera-
tion) result rounded to the input number of operation digits
(“8 digits” in this example) is displayed in an operation-result
display box 4031.

FIG. 39B shows the display screen 4030 when the second
operation (additional digit operation) result is displayed. In
the operation-result display box 4031, “3.6945406 e-3”, indi-
cated by “4031a”, is displayed as the second operation (addi-
tional digit operation) result rounded to eight digits or the
input number of operation digits (steps B21 and B23 in FIG.
38). in this example, three digits are underflowed in the first
operation (designated digit operation) result (step B13 in FIG.
38), the sum of “3”, the number of underflowed digits, and
“8”, the number of operation digits, namely, “11” is equal to
or smaller than the added operation digit number (step B15 in
FIG. 38; YES), so that the second operation (additional digit
operation) result normalized at step B11 is rounded to eight
digits directly and displayed (steps B21 and B23 in FIG. 38).

The operation result is equivalent to the result of perform-
ing the operation with 12 digits, the added operation digit
number, obtained by adding “4”, the additional number of
digits, to “8”, the input number of operation digits, and is the
accurate operation result with the number of underflowed
digits corrected for three underflowed digits are detected.

As apparent from the above, the sixth embodiment can
execute an operation according to the input number of opera-
tion digits and the designated operation type, detect the num-
ber of underflowed digits in the acquired operation result, and
display an operation result with the underflowed digits cor-
rected according to the detected number of underflowed dig-
its.

When the detected number of underflowed digits is 5 so
that the sum (*“13”) of the detected number of underflowed
digits “5” and the number of operation digits “8” exceeds the
added operation digit number “12” (step B15 in F1G. 38; NO),
the operation is executed again with a new added operation
digit number “17” obtained by adding the number of under-
flowed digits “5” and a predetermined number of additional
digits “4” to the number of operation digits “8 (step B17 in
FIG. 38), and the operation result is rounded off to eight digits
(step B21 in FIG. 38), thereby correcting the operation result.
Although the predetermined number of additional digits has

US 7,716,267 B2

39

been mentioned to be “4”, the number is not restrictive, and
may be set by, for example, a user.

Although the foregoing descriptions of the fifth and sixth
embodiments has been given of the case where the invention
is adapted to a graph function electronic calculator which is
one type of arithmetic control unit, products to which the
invention is adaptable are not limited to a graph function
electronic calculator, but the invention can be adapted to other
types of electronic devices, such as a calculator and a personal
computer which do not have a graph drawing capability, and
a PDA (Personal Digital Assistance).

Various embodiments and changes may be made thereunto
without departing from the broad spirit and scope of the
invention. The above-described embodiments are intended to
illustrate the present invention, not to limit the scope of the
present invention. The scope ofthe present invention is shown
by the attached claims rather than the embodiments. Various
modifications made within the meaning of an equivalent of
the claims of the invention and within the claims are to be
regarded to be in the scope of the present invention.

This application is based on Japanese Patent Application
No. 2003-359453 filed on Oct. 20, 2003, Japanese Patent
Application No. 2004-250678 filed on Aug. 30, 2004 and
Japanese Patent Application No. 2004-257057 filed on Sep. 3,
2004 and including specification, claims, drawings and sum-
mary. The disclosure of the above Japanese Patent Applica-
tions are incorporated herein by reference in their entireties.

What is claimed is:

1. A decimal calculation apparatus which performs multi-
digit decimal calculation with a number of calculation digits
set in a calculation instruction, and which comprises:

a multidigit memory section which acts as a memory such

that data are read and written on a per-word basis, each
word comprising a plurality of digits, and which stores

10

15

20

25

30

40

two BCD-coded operation data subjected to an opera-
tion, each operation data comprising a plurality of
words;

a start digit memory section which stores address data
indicating an operation start digit;

a calculation-instruction memory section which stores a
calculation instruction having a type of calculation set
therein;

an address control circuit which, based on the calculation
instruction stored in the calculation-instruction memory
section, takes out the address data indicating the opera-
tion start digit from the start digit memory section and
provides the multidigit memory section with an address
signal for reading operation data on the per-word basis
from a position where the start digit is a least significant
digit of word data; and

a decimal calculation section which (i) comprises a com-
puting unit that processes BCD-coded data on the per-
word basis, (i1) performs an operation for the operation
data comprising the plurality of words read out from the
multidigit memory section in response to designation by
the address control circuit, and (iii) sequentially writes
an operation result to the multidigit memory section.

2. The decimal calculation apparatus according to claim 1,

wherein:

the calculation instruction stored by the Calculation-in-
struction memory section includes address data desig-
nating a calculation start digit and a calculation end
digit; and

the address control circuit, upon reading out of the calcu-
lation instruction including the address data from the
calculation-instruction memory section, sequentially
designates the operation data from the calculation start
digit to the calculation end digit on the per-word basis.

% * & #* #*

	Info
	Abstract
	Drawing
	Description

